CBD/CBDA rich hemp: Pharmacokinetics across species and quality control for practitioners to consider

Presented by

Joseph Wakshlag DVM, PhD, DACVIM (nutrition), DACVSMR ElleVet Sciences Chief Medical Officer Professor at Cornell University College of Veterinary Medicine

#Trending

Cannabis in Veterinary Medicine: Cannabinoid Therapies for Animals

Joshua A. Hartsel, Kyle Boyar, Andrew Pham, Robert J. Silver, and Alexandros Makriyannis

© Springer Nature Switzerland AG 2019 R. C. Gupta et al. (eds.), Nutraceuticals in Veterinary Madicine, https://doi.org/10.1007/978-3-030-04624-8_10 *Veterinarni Medicina, 61, 2016 (3): 111–122*

Review Article

doi: 10.17221/8762-VETMED

The use of cannabinoids in animals and therapeutic implications for veterinary medicine: a review

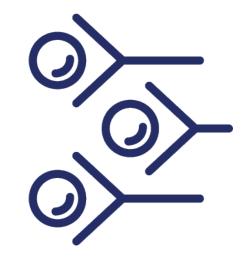
L. Landa¹, A. Sulcova², P. Gbelec³

¹Faculty of Medicine, Masaryk University, Brno, Czech Republic
 ²Central European Institute of Technology, Masaryk University, Brno, Czech Republic
 ³Veterinary Hospital and Ambulance AA Vet, Prague, Czech Republic

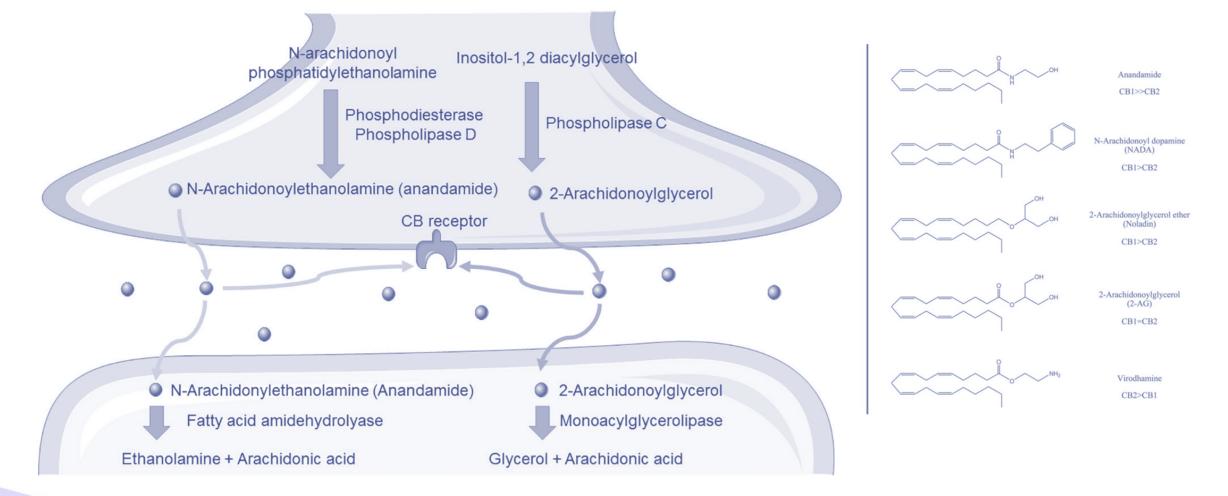
ABSTRACT: Cannabinoids/medical marijuana and their possible therapeutic use have received increased attention in human medicine during the last years. This increased attention is also an issue for veterinarians because

Charak for Lpdates ion animal owners now show an increased interest in the use of these compounds in veterireview sets out to comprehensively summarise well known facts concerning properties of mechanisms of action, role of cannabinoid receptors and their classification. It outlines the cal effects of cannabinoids in laboratory rodents and it also discusses examples of possible er animal species (ferrets, cats, dogs, monkeys) that have been reported in the scientific litnrticle deals with the prospective use of cannabinoids in veterinary medicine. We have not he topic of cannabinoids in an exhaustive manner; rather, our aim was to provide both the v and clinical veterinarians with a brief, concise and understandable overview of the use of rinary medicine.

Endocannabinoid system (ECS)

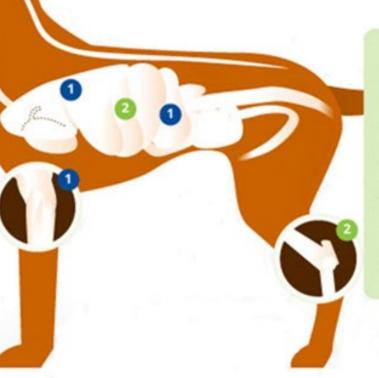

- Unless you're a protozoa or an insect, you have an ECS!
- Phylogenetically developed concurrently with the nervous system

Who learned about the ECS in school? How often are you asked about CBD?


Endocannabinoid system (ECS)

- Largely eluded scientists until mid-1990s
- Legal and regulatory issues surrounding cannabis and associated molecules
- 2018 Farm Bill → explosion of interest, products, and research

Endocannabinoids and CB Receptors

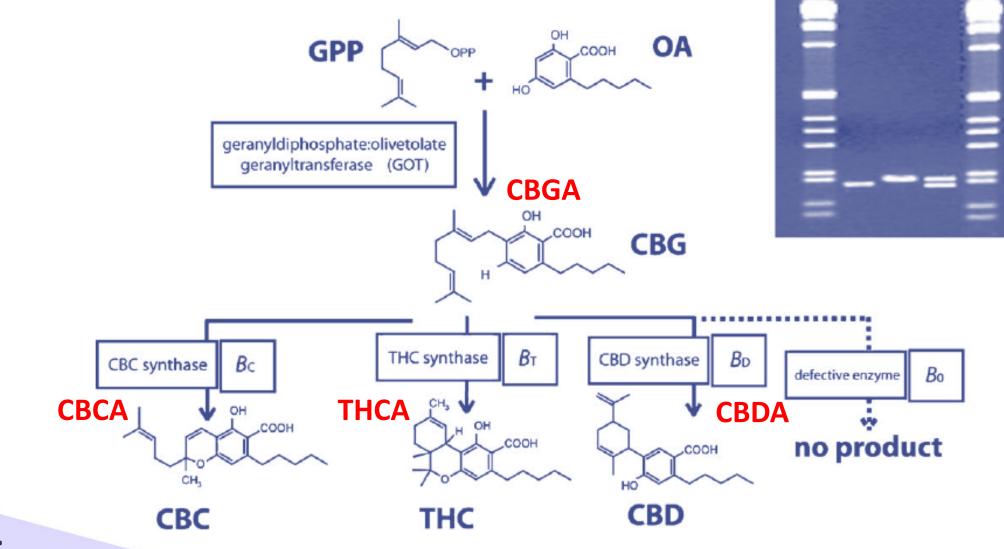

Endocannabinoid receptors

CB1

Mostly in the brain and central nervous system

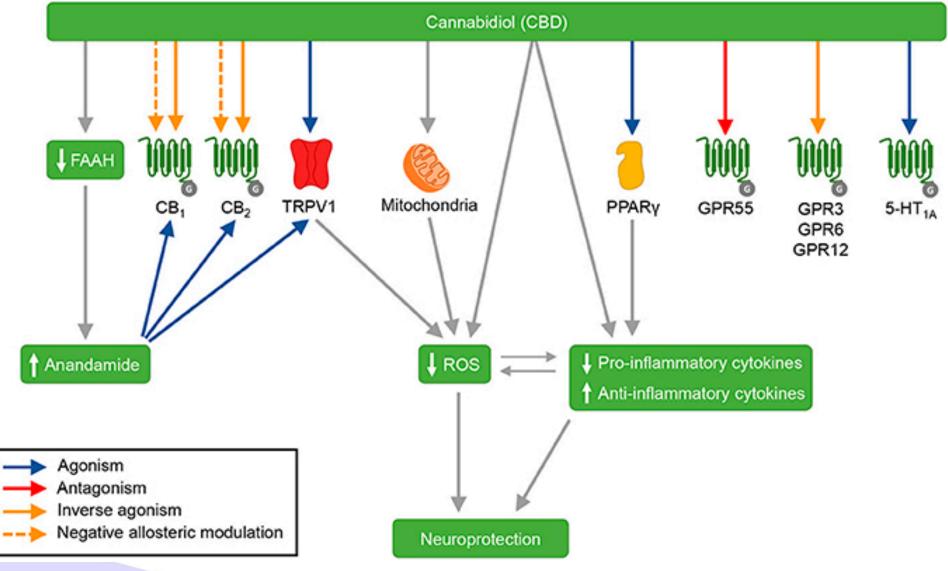
Also found in the lungs, blood vessels, muscles, digestive tract and reproductive organs

CB1 is more abundant than any other neurotransmitter receptor


CB2

Mostly in peripheral organs, especially immune cells

Also found in the liver, bone marrow, pancreas, and brainstem


The biosynthetic pathways of hemp

M BT/BT BD/BD BT/BD M

The Endocannabinoidome

Cannabis vs Hemp vs Marijuana: What's the difference?

Cannabis/Hemp – Legal to distribute

- Cannabis
- Industrial hemp
- Grown for its tall, sturdy stalks
- Paper, textiles, biodegradable plastics, health food, fuel
- Low THC level < 0.3%

Marijuana/Cannabis

- Cannabis Sativa, Cannabis Indica
- Recreational and medical drug
- Restricted substance
- Leaves and flowering portions of the plants
- High THC level > 0.3%

Allowed without FDA Approval

Use of Hemp CBD Product in Veterinary Clinics

- Hemp CBD is not a controlled substance federally or in any state
- VMBs regulate veterinarians—not AVMA or other VMAs
- AAVSB recommends that veterinarians who use hemp CBD use products that:
 - Have a COA by an independent 3rd party lab
 - Tested for safety
 - Tested for accuracy of the label
 - Efficacy tested products preferred

A Confusing Market

Penn Medicine News							
News	Releases	News Blog	Publications & Special Projects	Internal Newsletters			
lome ' News Relea	ses ' Penn Study	Shows Nearly 70 Per	cent of Cannabidiol Extracts				
News Re	elease						
News Re	elease						

Mislabeling may lead to adverse effects for patients, including children with epilepsy

November 07, 2017

Not all products are the same

Veterinary Medicine: Research and Reports

Dovepress

A Open Access Full Text Article ORIGINAL RESEARCH Cannabinoid, Terpene, and Heavy Metal Analysis of 29 Over-the-Counter Commercial Veterinary Hemp Supplements

This article was published in the following Dove Press journal: Veteringry Medicine: Research and Reborts

Joseph J Wakshlag Stephen Cital² Scott | Eaton³ Reece Prussin² Christopher Hudalla 3

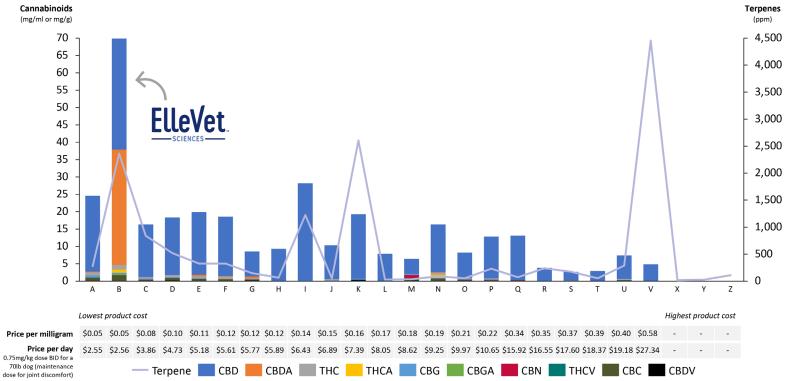
Department of Clinical Sciences, Cornell cannabinoids including cannabidiol (CBD), Δ9-tetrahydrocannabinol (THC), cannabigerol

University College of Veterinary Medicine, Ithaca, NY 14853, USA; ²ElleVet Sciences, Product Development and Scientific Communications, Portland, ME, USA; ³ProVerde Laboratories, Milford, MA 01757, USA

Purpose: The use of veterinary low tetrahydrocannabinol (THC) Cannabis sativa (ie, hemp) products has increased in popularity for a variety of pet ailments. Low-THC Cannabis sativa is federally legal for sale and distribution in the USA, and the rise in internet commerce has provided access to interested consumers, with minimal quality control. Materials and Methods: We performed an internet word search of "hemp extract and dog" or "CBD product and dog" and analyzed 29 products that were using low-THC Cannabis sativa extracts in their production of supplements. All products were tested for major

(CBG), and other minor cannabinoids, as well as their carboxylic acid derivatives (CBDA, THCA, CBGA) using an ISO/IEC 17025 certified laboratory. Products were also tested for major terpenes and heavy metals to understand constituents in the hemp plants being extracted and distributed. **Results:** All products were below the federal limit of 0.3% THC with variable amounts of CBD (0-88 mg/mL or g). Only two products did not supply a CBD or total cannabinoid concentration on their packaging or website, while 22/29 could supply a certificate of analysis (COA) from a third-party laboratory. Ten of the 27 products were within 10% of the total cannabinoid concentrations of their label claim with a median concentration of 93% of claims (0-154%). Heavy metal contamination was found in 4/29 products, with lead being the most prevalent contaminant (3/29).

Conclusion: The products analyzed had highly variable concentrations of CBD or total cannabinoids with only 18 of 29 being appropriately labeled according to current FDA nonmedication, non-dietary supplement or non-food guidelines. Owners and veterinarians wanting to utilize CBD-rich Cannabis sativa products should be aware of low-concentration products and should obtain a COA enabling them to fully discuss the implications of use and calculated dosing before administering to pets. Keywords: cannabinoid, hemp, supplement, cannabidiol, pet, terpene, oral

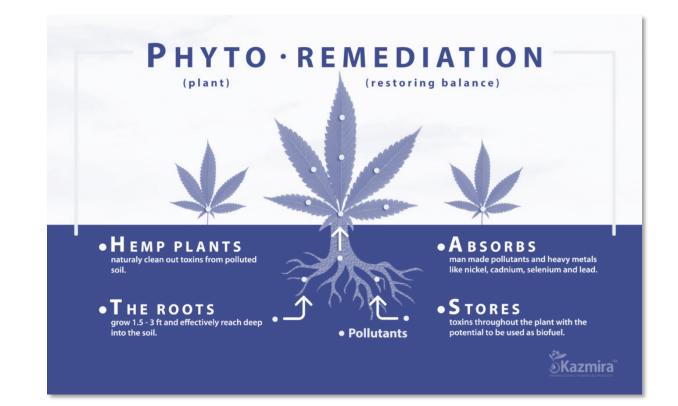

Introduction

Correspondence: Joseph I Wakshlag Correspondence, Joseph J watching Cornell University College of Veterinary Medicine, Veterinary Medical Center C2-009, 930 Campus Road, Ithaca, NY 14853, USA Email Dr.joesh@gmail.com

DovePress 🖬 У in 🕨

The recent federal legalization and deregulation of low-THC Cannabis sativa, otherwise known as hemp, as a commercial crop in the USA has created a new supplement market for humans and pets alike that is largely unregulated.1 The de-scheduling of low-THC Cannabis sativa derived extracts forced any oversight of products containing hemp derived CBD, and other cannabinoids, to the Food and Drug Administration (FDA).² The lack of clear FDA regulations and inconsistent state regulations being

Veterinary Medicine: Research and Reports 2020:11 45-55 c/3.0/). By accessing



Based on a double blind third-party analysis

Heavy Metal Contamination

- 4 of 29 products were contaminated
- Hemp is often used for bioremediation of soil
- Increased uptake of mineral from soil
- Must ask for COA on final product
- Oils and other ingredients can be contaminated

COA – from a certified 17025 laboratory

AMT (µg/kg) ND ND

ND

ND

ND 0.432/0.864

ND 0.432/0.864

ND 0.432/0.864

N D N D

ND 0.432/0.864

8.64/17.3 43.2/86.4

8.64/17.3

132/132

132/132

132/132 132/132

132/13:

132/132

132/132 132/132

132/132

438/87

132/132

132/132

132/132

132/132

132/132

175/175

132/132

132/132 132/132

132/132

132/132 132/132

0.0886/0.443 0.177/0.532

LOD/LOQ (µg/kg)

92.0/230

92.0/184

Page 2 of 3

ND

ND

0.432/0.864 17.3/34. 43.2/86.4

NOVA ANALYTIC LABS	NOVA ANALYTIC LABS // 65 M	ILLIKEN STREET, UNIT C PORTLAND ME 04 EMAIL: INNOVATION@NO		PREPARATION	UAL SOLVEN	TS, POISONS 2 // ANALYSI	AND TOXINS BY H IS: OCT 28, 2022	EADSPACE	GC-MS	
			ME LICENSE #: TF284	ANALYTE		AMT (µg/g)		PASS/FAIL	ANALYTE	LIMIT
				BUTANE HEXANE	5000 μg/g 290 μg/g	ND ND	0.864/2.16 0.864/2.16	N/A N/A	CHLOROFORM ETHYL ETHER	1 μg/g 5000 μg/g
	CERTIFICATE OI	FANALYSIS		ACETONE	5000 µg/g	ND	43.2/86.4	N/A	ACETONITRILE	410 µg/g
	* FOR QUALITY ASSURANCE PURPOSES. NOT			BENZENE	1 µg/g	ND	0.432/0.864	N 4A	ETHYL ACETATE	5000 µg/g
VET STRENGTH	CHEWS (EDIBLE SOLID) // THIS	IS A REVISED COA ISSUED NOV 1	1. 2022	ETHANOL HEPTANE	5000 µg/g 5000 µg/g	83.5 ND	- xtra	CTIC	-AND M-X LEN	vent
		-	.,	PENTANE	5000 µg/g	ND	43.2/86.4	CUT	ISOPROPYL ALCOHOL	V 170 µg/g
	CLIENT: ELLEVET SCIENCES	I BATCH: BASSED		PROPANE	5000 µg/g	ND	17.3/34.5	N/A	TRICHLOROETHY-	1 µg/g
	CETENT: EELEVET SCIENCES	W BATCH. PASSED		TOLUENE	890 µg/g 3000 µg/g	N D	4.32/8.64 43.2/86.4	N/A N/A	LENE 1,2-	
				O-XYLENE	2170 µg/g	ND	8.64/17.3	N/A	DICHLOROETHANE	1 µg/g
	ATCH NO.: 686007 ATRIX: EDIBLE SOLID	CANNABINOID OVERVIEW							METHYLENE CHLORID	e 1 μg/g
SA	MPLE ID: NAL-221026-001	CBDA:	8.94 mg/srv	PST.2: PESTIC	DES, INSECT	CIDES, FUNG	ICIDES AND GROU	WTH REGU	LATORS BY LC-HRMS	
	CEIVED ON: OCT 26, 2022	CBD:	8.64 mg/srv	ANALYTE		AMT (µg/kg)	LOD/LOQ (µg/kg)		ANALYTE	LIMIT AN
	MPLE SIZE: 10 UNITS			NALED	500 µg/kg	AMT (µg/kg)	132/132	PASS/FAIL N/A	METHIOCARB	200 µg/kg
	CEIVED BY: ZACHARY SMITH	TOTAL CANNABINOIDS:	19.4 mg/srv	OXAMYL	1000 µg/kg	ND	132/132	N/A	ACEQUINOCYL	2000 µg/kg
	RVING SIZE: 6 G			PHOSMET	200 µg/kg	ND	132/132	N/A	ACETAMIPRID	200 µg/kg
				ACEPHATE	400 µg/kg 400 µg/kg	ND ND	132/132	N/A N/A	FLUDIOXONIL	200 µg/kg 400 µg/kg
				BOSCALID	400 µg/kg	ND	132/132	N/A	HEXYTHIAZOX	1000 µg/kg
FACTURER INFO		BATCH RESULT: PASSED		CARBARYL	200 µg/kg	ND ND	132/132	N/A N/A	PRALLETHRIN	200 µg/kg
JFACTURER INFO		BATCH RESULT: PASSED		DIAZINON	200 µg/kg 400 µg/kg	ND ND	132/132 132/132	N/A N/A	SPIROXAMINE	400 µg/kg 200 µg/kg
FACTURER		POTENCY PASS		IMAZALIL	200 µg/kg	ND	132/132	N/A	AZOXYSTROBIN	200 µg/kg
T SCIENCES		METALS TESTED		METHOMYL	400 µg/kg	ND ND	132/132	NA	CHLORFENAPYR	1000 µg/kg
N ROBERTS RD, SUITE 4 PORTLAND, MAINE 04106				SPINOSAD	200 µg/kg 200 µg/kg	ND	12/10	STI	CI GELEZINS	200 µg/kg 200 µg/kg
		MICROBIAL TESTED		ABAMECTIN	500 µg/kg	ND	132/132	200	CYPERMETHRIN	1000 µg/kg
E 54		MYCOTOXINS TESTED		ETOXAZOLE MGK-264 I	200 µg/kg	ND ND	132/132 132/132	N/A N/A	IMIDACLOPRID MYCLOBUTANIL	400 µg/kg
RIAL HEMP		PESTICIDES TESTED		MGK-264 I MALATHION	200 µg/kg	ND	132/132	N/A N/A	SPIROMESIFEN	200 µg/kg 200 µg/kg
		SOLVENTS TESTED		METALAXYL	200 µg/kg	ND	132/132	N/A	TEBUCONAZOLE	400 µg/kg
				PYRIDABEN BIFENAZATE	200 µg/kg 200 µg/kg	ND ND	132/132 132/132	N/A N/A	THIAMETHOXAM FENPYROXIMATE	200 µg/kg 400 µg/kg
				BIFENTHRIN	200 µg/kg	ND	132/132	N/A	PACLOBUTRAZOL	400 µg/kg
OTENCY & CANNABINOID	PROFILE BY HPLC-UV			CARBOFURAN	200 µg/kg	ND	132/132	N/A	PROPICONAZOLE	400 µg/kg
RATION: NOV 08, 2022 // AM	NALYSIS: NOV 08, 2022			CYFLUTHRIN	1000 µg/kg 1000 µg/kg	ND ND	438/877	N/A N/A	SPIROTETRAMAT PERMETHRIN CIS	200 µg/kg
LIMIT AMT	AMT LOD/LOQ (%) PASS/FAIL ANA	ALYTE LIMIT AMT AMT	LOD/LOQ (%) PASS/FAIL	DICHLORVOS	1000 µg/kg	ND	132/132	N/A	KRESOXIM-	400 µg/kg
0.00668 % 0.0668		THC 0.00675 % 0.0675 mg/g 0		DIMETHOATE	200 µg/kg	ND ND	132/132 132/132	N/A N/A	METHYL TRIFLOXYSTROB-	
0.00568 % 0.0568	mg/g 0.00104/0.00518 N/A 410	THC ND ND 0	.00104/0.00518 N/A	FENOXYCARB	200 µg/kg 200 µg/kg	ND	132/132	N/A N/A	IN	200 µg/kg
0.144 % 1.44 0.149 % 1.49			.00104/0.00518 N/A .00104/0.00518 N/A	FLONICAMID	1000 µg/kg	ND	132/132	N/A	PARATHION-	200 µg/kg
0.149 % 1.49 ND	mg/g 0.00104/0.00518 N/A TH ND 0.00104/0.00518 N/A TH			MGK-264 11		ND	132/132	N/A	METHYL PERMETHRIN TRANS	
< LOQ <			.00104/0.00518 N/A						PIPERONYLBUTO-	2000 µg/kg
ND 0.00556 % 0.0556		TAL CBD 0.00675 % 0.0675 mg/g 0.275 % 2.75 mg/g	N/A N/A						XIDE CHLORANTRANIL-	
ND	ND 0.00104/0.00518 N/A CBI	D/SRV 8.64 mg	N/A						CHLORANTRANIL-	200 µg/kg
ND		THC/SRV 0.410 mg	N/A							
ND ND	ND 0.00104/0.00518 N/A TO ND 0.00104/0.00518 N/A TO	TAL THC/SRV** 0.410 mg TAL CBD/SRV** 16.5 mg	N/A N/A	MYC.1: MYCO	TOXINS BY LO	HRMS				
ND	ND 0.00104/0.00518 N/A			PREPARATION	: NOV 01, 20	22 // ANALYS	IS: NOV 01, 2022			
AL CBD = (CBDA X 0.877) + CBD AL THC = (THCA X 0.877) + THC				ANALYTE	LIMIT	AMT (µg/kg)	LOD/LOQ (µg/kg)			LIMIT AMT (PS
d on an as received basis				AFLATOXIN B1		ND	08/09.200	otr	NYTPAC.	
l mg/g				AFLATOXIN B2 AFLATOXIN G1		N D	0.V886/0V4	ULL	XHAP S	
	RESULTS CERTIFIED BY:	RESULTS CERTIFIED BY:	RESULTS CERTIFIED BY:				5.0000.00-			
	BARRY CHAFFIN	GREG NEWLAND	CHRIS ALTOMARE	HME.1: HEAV)	METALS BY	CP-MS				
	COO, NOVA ANALYTIC LABS	CSO, NOVA ANALYTIC LABS C NOV 11, 2022	EO, NOVA ANALYTIC LABS	PREPARATION	: OCT 27, 202	2 // ANALYSI	IS: OCT 28, 2022			
金融	NOV 11, 2022	Man	NOV 11, 2022	ANALYTE	LIMIT	MT (µg/kg)	LOD/LOQ (µg/kg)	PASS/FAIL	ANALYTE	
/49552	GN.	During	Chungoto town							
		- 10 former	(sec.)		500 µg/kg 500 µg/kg	N D < LO O	92.0/276	N/A N/A	CADMIUM 500 MERCURY 3000	µg/kg
	https://lims.tagleaf.com/c	oa /6mlwavzZk0		Ansente	P8'"8	- 104			motal	•
	https://mistugieal.com/o	SS_ STATISTICS					TEd	ννι	metals	2
								· / ·		-
						ht	tps://lims.	tagleaf	.com/coa_/6mlv	wavzZk0

FI

SCIENCES -

MIC.5: SALMONELLA BY PCR PREPARATION: OCT 26, 2022 // ANALYSIS: OCT 27, 2022 ANALYTE LIMIT AMT (µg/g) LOD/LOQ (µg/g) PASS/FAIL LIMIT AMT (CFU/g) LOD/LOQ (CFU/g) PASS/FAIL Any amt in 1 SALMONELLA ND 1.00/1.00 N// SPP. gram MIC.4: PATHOGENIC E. COLI BY PCR PREPARATION: OCT 26, 2022 // ANALYSIS: OCT 27, 2022 ANALYTE LIMIT AMT (CFU/g) LOD/LOQ (CFU/g) PASS/FAIL ESCHERICHIA Any amt in 1 ND 1.00/1.00 COLI gram MICE.21: TOTAL COLLEGEM BY MOST PROBABLE HUMBER PREPARATION: OCT 26, 2022 // ANALYSIS: OCT 27, 2022 ANALYTE LIMIT ANT (CFU/g) MICE PROBABLE HUMBER COLLEGEM BY MOST PROBABLE HUMBER COLLEGEM BY MOST PROBABLE HUMBER LIMIT AMT (Hg/kg) LOD/LOQ (Hg/kg) PASS/FAIL TOTAL AEROBIC BACTERIA BY MOST PROBABLE NUMBER PREPARATION: OCT 26, 2022 // ANALYSIS: OCT 27, 2022 ANALYTE LIMIT AMT (CFU/g) LOD/LOQ (CFU/g) PASS/FAIL AEROBIC BACTERIA 100000 CFU/g 330 100/100 N/A TOTAL YEAST AND MOLD BY MOST PROBABLE NUMBER PREPARATION: OCT 26, 2022 // ANALYSIS: OCT 29, 2022 ANALYTE LIMIT AMT (CFU/g) LOD/LOQ (CFU/g) PASS/FAIL YEAST & MOLD 10000 CFU/g ND 100/100 N/A NOTES BARRY CHAFFIN PESTICIDES, INSECTICIDES, FUNGICIDES AND GROWTH REGULATORS BY LC-HRMS ANALYSIS FOR NALED AND CLOPENTEZINE ARE QUALITATIVE ONLY. ANY NUMBER INDICATES DETECTION AND ACTUAL NOV 01, 2022 CONCENTRATION SHOULD NOT BE INTERPRETED QUANTITATIVELY RAPRY CHAFFIN POTENCY & CANNABINOID PROFILE BY HPLC-IIV THE STANDARD LAB UNCERTAINTY FOR POTENCY IS 5% OF THE REPORTED VALUE. * FOR QUALITY ASSURANCE PURPOSES. NOT A MAINE COMPLIANCE CERTIFICATE A ACCORDANCE WITH THE RULES AND REGULATIONS SET FORTH IN THE MAINE ADULT USE PROGRAM. LABORATORY SAMPLING PROTOCO END OF REPORT LOD/LOQ (#g/kg) PASS/FAIL PASS/FAIL https://lims.tagleaf.com/coa_/6mlwavzZk0 Page 3 of 3

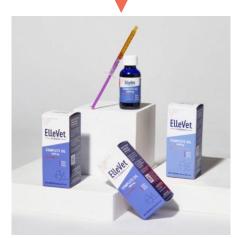
ElleVet – from Farm to Customer

Manufacturing

The ElleVet extract is further purified to meet all GMP requirements

Research

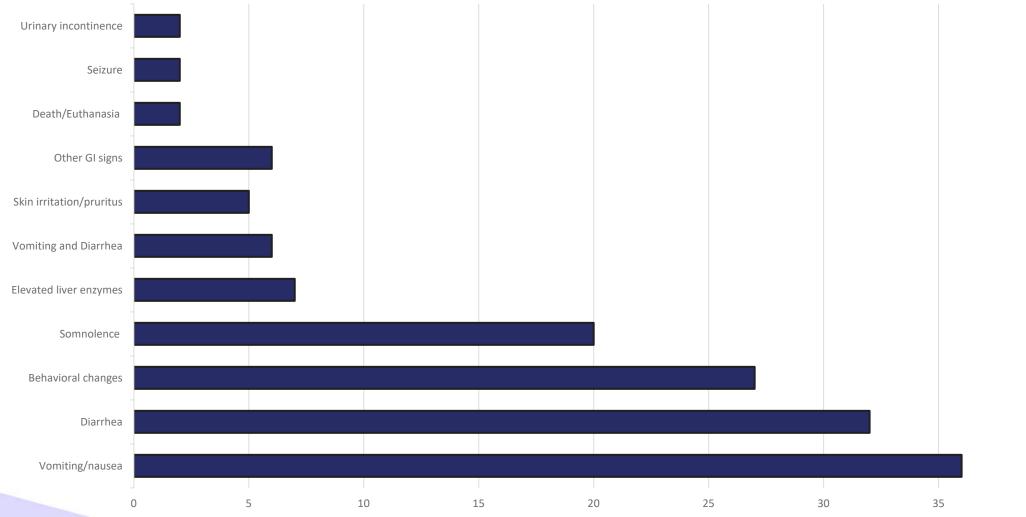
Products are supported by an expanding set of PK, safety and efficacy studies in different spp


Growing

The Unique Hemp CBD + CBDA extract used by ElleVet is grown and produced from a single proprietary hemp cultivar on our licensed farm in Colorado, USA

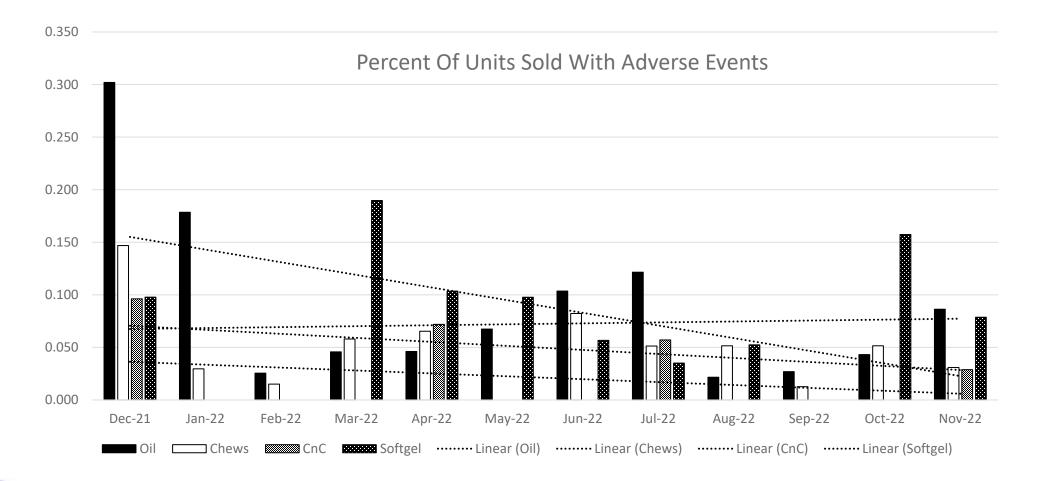
Testing


Products undergo comprehensive testing in-house and at 3rd party laboratories



Pharmacovigilance beyond QC, literature monitoring/production...

- Adverse event and product complaint management
- Safety data collection and coding
- Case management
- Monitoring
- Reporting
- Product recovery and analysis
- Communication



Classification of reported events per 10,000 unit sold

Adverse Reporting Ellevet

Reported Adverse Events

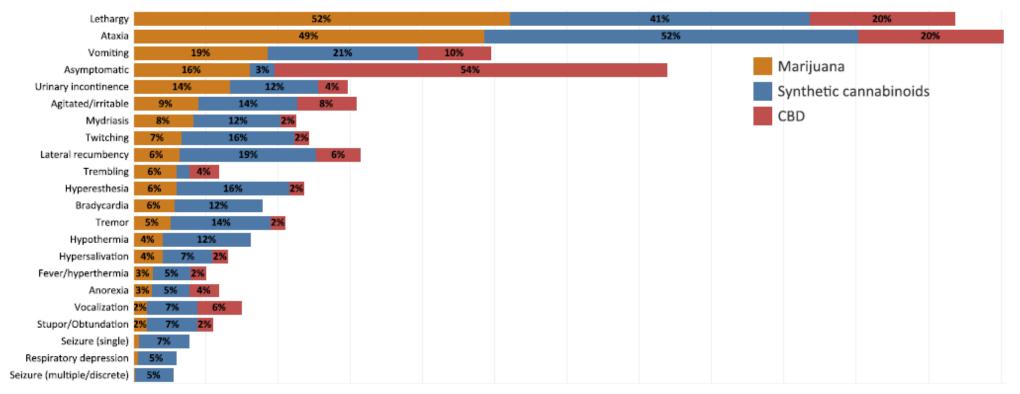


Fig. 1. Clinical signs associated with exposure to marijuana (ie, THC containing products, \sim 2200 cases), synthetic cannabinoids (\sim 60 cases), and CBD (\sim 50 cases) as reported to Pet Poison Helpline. Canines represent \sim 96% of the displayed data. Confirmation of exposure was not obtained in all cases, nor could co-ingestants such as chocolate or other toxicants be ruled out. Therefore, these data are meant to portray general trends only. Clinical signs reported in less than 5% of cases were excluded from this graphic.

NASC Reports per Administrations sold – 13 years

	Adverse events (report rate/million	Serious adverse events (report rate/million	Administrations
Year	administrations sold)	administrations sold)	sold ^a
2010	0.00	0.00	25,016
2011	0.00	0.00	29,098
2012	0.00	0.00	104,421
2013	7.82	0.00	255,642
2014	0.00	0.00	543,023
2015	0.00	0.00	894,762
2016	0.00	0.00	1,755,993
2017	0.13	0.00	7,938,081
2018	0.47	0.00	40,236,719
2019	0.87	0.00	115,449,344
2020	2.30	0.00	186,201,013
2021	2.15	0.02	286,466,260
2022	2.37	0.03	257,268,163
2023 ^b	29.69	0.15	6,668,421
Grand Total	2.19	0.01	903,835,956

Number of administrations sold was assumed to be a close approximation to administrations consumed.

^bUsage data for 2023 is incomplete.

CBD long-term/dosing studies

BJP British Journal of Pharmacology

British Journal of Pharmacology (2019) 176 1506–1523 1

Themed Section: 8th European Workshop on Cannabinoid Research

RESEARCH PAPER

Species-specific susceptibility to cannabisinduced convulsions

Correspondence Gary J. Stephens, Hopkins Life Sciences Building, The University of Reading, Whiteknights, Reading, Berkshire R6 6AP, UK. E-mail: g.j.stephens@reading.ac.uk

Received 23 July 2017; Revised 24 January 2018; Accepted 5 February 2018

Benjamin J Whalley^{1,4}, Hong Lin¹, Lynne Bell², Thomas Hill³, Amesha Patel⁴, Roy A Gray⁴, C Elizabeth Roberts⁴, Orrin Devinsky⁵, Michael Bazelot⁴, Claire M Williams² and Gary J Stephens¹

¹Division of Pharmacology, School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Reading, UK, ²School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK, ³Physiology & Medical Physics, Royal College of Surgeons in Irel Dublin, Ireland, ⁴GW Research Ltd, Salisbury, UK, and ⁵Department of Neurology, Comprehensive Epilepsy Center, New York University School -Medicine, New York, NY, USA

BACKGROUND AND PURPOSE

Numerous claims are made for cannabis' therapeutic utility upon human seizures, but concerns persist about risks. A potent confounder is the presence of both Δ° -tetrahydrocannabinol (THC), variously reported to be pro- and anticonvulsant, and cannabidiol (CBD), widely confirmed as anticonvulsant. Therefore, we investigated effects of prolonged exposure to differer THC/CBD cannabis extracts on seizure activity and associated measures of endocannabinoid (eCB) system signalling.

EXPERIMENTAL APPROACH

Cannabis extract effects on *in vivo* neurological and behavioural responses, and on bioanalyte levels, were measured in rats and d. Extract effects on seizure activity were measured using electroencephalography telemetry in rats. eCB signalling was also investige using radioligand binding in cannabis extract-treated rats and treatment-naïve rat, mouse, chicken, dog and human tissue. mg/kg QD; 15/sex/group + 10/sex/group for C and HD recovery), no dose-limiting toxicity was observed. The primary target organ was liver, with hepatocellular hypertrophy, accompanied by slight (1.2-1.4 fold) increases in ALT and ALP, observed at the MD and HD in males and females. No effects were observed on sperm parameters; interstitial cell hyperplasia in ovary was observed at the MD and HD. In the 39-week study (0, 10, 50, or 100 mg/kg QD; 4/sex/group + 2/sex for C and HD recovery), there were no deaths; the only clinical sign was soft/liquid/mucoid feces. Decreases in absolute body weight (compared to C) were observed at all doses in males (5, 15, and 12% at LD, MD, and HD, respectively) and females (22, 29, and 32% at LD, MD, and HD, respectively). As in rat, the primary target organ was liver, with hepatocellular hypertrophy detected at all doses (dose-related only in males), accompanied by increases in ALT (slight) and ALP (up to 8-fold).

The toxicokinetic (TK) data at the highest doses tested in rat and dog and at the maximum recommended dose in humans are summarized in the following table.

	DOSE		CBD		7-0	H-CBD	7-COOH-CBD		
SPECIES	(mg/kg)	SEX	Cmax (ng/mL)	AUC(0-24h) (ng*hr/mL)	C _{max} (ng/mL)	AUC(0-24h) (ng*hr/mL)	C _{max} (ng/mL)	AUC(0-24h) (ng*hr/mL)	
		M							
Rat	150	M	6160	60000	334	2560	4180	37100	
Kat	150	F	7530	67500	625	6730	2710	40500	
Dec	100	M	2570	20500	134	1380	82.1	994	
Dog	100	F	2660	22400	117	1090	137	1560	
Human*	10 BID	M/F		2790		1562		137886	

*Data were extrapolated (by the sponsor) from data in humans at 750 mg BID, following the first daily dose (Study GWEP1544).

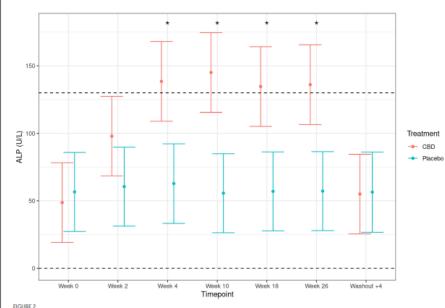
8 Dogs | 2mg/Kg Total cannabinoids | BID | 12wks

- ElleVet Mobility Chews
- mean maximum concentration (Cmax) of 301 ng/mL
- area under the curve (AUC) of 1297 ng-h/mL
- time to maximal concentration (Tmax) of 1.4 h

8 Cats | 2mg/Kg Total cannabinoids | BID | 12wks

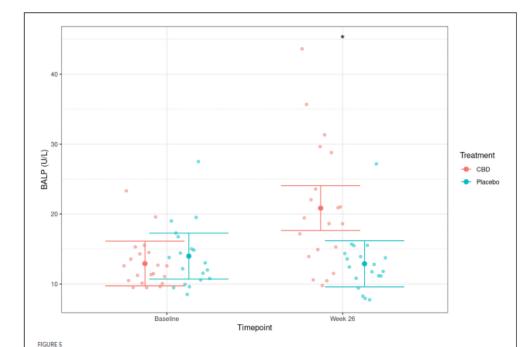
- ElleVet blend-infused fish oil
- mean maximum concentration (Cmax) of 43 ng/mL
- area under the curve (AUC) of 164 ng-h/mL
- time to maximal concentration (Tmax) of 2h

		🔮 ani	mals			M	DPI		
		Safety As Nutraceu Kelly A. Deabol ¹ Department o Medicine, Ga ² Department o wss28cornell	ssessment tical in Ho d ¹ , Wayne S. Sch & Comparative Diag inseville, FL 32608, 1 Molecular Medicin edu	macokinetics with Use o ealthy Dogs wark ² , Lisa Wolf ³ a gnostic Population Med USA; kdeaboid@icloud. ne, Comell College of V	of CBD-Ric s and Cats and Joseph J. Waks licine, University of F com eveninary Medicine, I	th Hemp hlag ^{4,*} Jorida College of Veter Ishaca, NY 14853, USA;			
		Lisa.Wolfe@c	olostate.edu	cility, Colorado State U					
	_			Cornell College of Veter .com; TeL: +1-(607)-253-					
ble 6. Cat (n = 8) mean and : weeks, 8 weeks and 12 weeks o							nock for pdates		
Serum Chemistry (Ref. Range) **	Week 0	Week 4	Week \$ Week 12 p-Value mistry or complete blood n doiing in dogs and cats.				blood		
TP (5.2-8.8 g/dL)	7.2 ± 0.2	6.7 ± 0.2	7.1 ± 0.2	7.1 ± 0.2	0.94	nd complete blood o	ounts		
Albumin (2.5-3.9 g/dL)	3.2 ± 0.1	3.2 ± 0.1	3.4 ± 0.1	3.2 ± 0.1	0.65	n dogs and cats, wit	th cats		
	4.0 ± 0.2	3.5 ± 0.2	3.8 ± 0.2	3.9 ± 0.2	0.72	losing may differ be	tween		
AST (10-100 U/L)	$\begin{array}{c} 4.0\pm0.2\\ 21\pm2 \end{array}$	24 4 4	24 ± 3	3.9 ± 0.2 24 ± 3	0.72 0.17	tosing may differ be m and few changes	tween in the		
AST (10-100 U/L) ALT (10-100 U/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \end{array}$	24 ± 4 90 ± 30		3.9 ± 0.2	0.72	losing may differ be	tween in the over		
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \end{array}$	24 ± 4 90 ± 30 30 ± 6	24 ± 3 76 ± 17	3.9 ± 0.2 24 ± 3 75 ± 15	0.72 0.17 0.29	tosing may differ be in and few changes tal supplementation lanine amino trans	tween in the over ferase	ediately prior t	o fweek (i)
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) GGT (1-10 U/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \end{array}$	24 ± 4 90 ± 30 30 ± 6 1 ± 0	24 ± 3 76 ± 17 Table 4. Dog	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean as	0.72 0.17 0.29 and SEM of serv	losing may differ be in and few changes ral supplementation danine amino trans im chemistry pa	tween in the n over ferase rameters imme		
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) GGT (1-10 U/L) BUN (14-36 mg/dL)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \end{array}$	24 ± 4 90 ± 30 30 ± 6	24 ± 3 76 ± 17 Table 4. Dog	3.9 ± 0.2 24 ± 3 75 ± 15	0.72 0.17 0.29 and SEM of serv	losing may differ be in and few changes ral supplementation danine amino trans im chemistry pa	tween in the n over ferase rameters imme		
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) GGT (1-10 U/L) BUN (14-36 mg/dL) reatimine (0.6-2.4 mg/dL)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \end{array}$	24 ± 4 90 ± 30 30 ± 6 1 ± 0 22 ± 1	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 we	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean as	0.72 0.17 0.29 nd SEM of seru s of an oral 2 mg	iosing may differ be in and few changes nal supplementation lanine amino trans in chemistry pa g/kg CBD dose tw	tween in the n over ferase rameters imme rice daily using	a CBD-rich hen	np product
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) GCT (1-30 U/L) BUN (14-36 mg/dL) reatinine (1.6-24 mg/dL) ophorous (2.4-8.2 mg/dL) Glacose (64-170 mg/dL)	$\begin{array}{c} 4.0\pm0.2\\ 21\pm2\\ 51\pm5\\ 30\pm5\\ 1\pm0\\ 23\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 90\pm2 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.0 \\ 4.6 \pm 0. \\ 85 \pm 2 \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 we Serum	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean az eeks and 12 week	0.72 0.17 0.29 and SEM of serv	losing may differ be in and few changes ral supplementation danine amino trans im chemistry pa	tween in the n over ferase rameters imme		
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) BUN (14-36 mg/dL) reatinine (16-24 mg/dL) reatinine (16-24 mg/dL) Schores (24-8.2 mg/dL) Succes (64-170 mg/dL) Julcium (82-10.8 mg/dL)	$\begin{array}{c} 4.0\pm0.2\\ 21\pm2\\ 51\pm5\\ 30\pm5\\ 1\pm0\\ 23\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 90\pm2\\ 9.6\pm0.1 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.0 \\ 4.6 \pm 0. \\ 85 \pm 2 \\ 9.0 \pm 0. \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 we Serum (Ref J	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean a: eeks and 12 weeks Chemistry Range) **	0.72 0.17 0.29 and SEM of seru s of an oral 2 mg Week 0	losing may differ be n and few changes nal supplementation dimine aminor trans im chemistry pa gkg CBD dose tw Week 4	tween in the 1 over ferase rameters imme rice daily using Week 8	a CBD-rich hen Week 12	np product <i>p</i> -Value
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-100 U/L) GGT (1-10 U/L) BUN (14-36 mg/dL) reatining (16-24 mg/dL) sephorous (2.4-8.2 mg/dL) Elacose (64-170 mg/dL) ilcium (8.2-10.8 mg/dL) ingensium (1.5-2.5 mEq/L)	$\begin{array}{c} 4.0\pm0.2\\ 21\pm2\\ 51\pm5\\ 30\pm5\\ 1\pm0\\ 23\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 90\pm2\\ 9.6\pm0.1\\ 1.9\pm0.1 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.4 \\ 46 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.4 \\ 1.8 \pm 0.4 \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 we Serum (Ref J TP (5.0	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean at eeks and 12 weeks Chemistry Range) **	0.72 0.17 0.29 or of seru s of an oral 2 mg Week 0 6.1 = 0.1	iosing may differ be in and few changes nal supplementation lanine amino trans in chemistry pa g/kg CBD dose tw	tween in the n over ferase rameters imme rice daily using	a CBD-rich hen	np product
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) GCT (1-10 U/L) BUN (14-36 mg/dL) BUN (14-36 mg/dL) BUN (14-36 mg/dL) Bucose (64-170 mg/dL) alcium (82-10.8 mg/dL) alcium (82-10.8 mg/dL) odium (145-158 mEq/L)	$\begin{array}{c} 4.0\pm0.2\\ 21\pm2\\ 51\pm5\\ 30\pm5\\ 1\pm0\\ 23\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 90\pm2\\ 9.6\pm0.1\\ 1.9\pm0.1\\ 1.51\pm1 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.1 \\ 4.6 \pm 0.1 \\ 85 \pm 2 \\ 9.0 \pm 0.1 \\ 1.8 \pm 0.0 \\ 153 \pm 1 \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 w Serum (Ref J TP (5.0 Albumin)	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean ar eeks and 12 weeks Chemistry Range) **)-7.4 g/dL) (2.7-4.4 g/dL)	0.72 0.17 0.29 and SEM of seru s of an oral 2 mg Week 0	losing may differ be n and few changes nal supplementation denine amino trans um chemistry pa g/kg CBD dose tw Week 4 5.9 ± 0.2	tween in the over ferase rameters imme rice daily using Week 8 6.3 ± 0.2	a CBD-tich hen Week 12 6.0 ± 0.2	product p-Value 0.65
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) GCT (1-10 U/L) BUN (14-36 mg/dL) reptantine (16-24 mg/dL) septantous (24-8.2 mg/dL) septantous (24-8.2 mg/dL) alcium (82-10.8 mg/dL) adcium (15-2.5 mg/L) odium (145-158 mg/L) sessium (3.4-5.6 mg/L)	$\begin{array}{c} 4.0\pm0.2\\ 2.1\pm2\\ 5.1\pm5\\ 3.0\pm5\\ 1\pm0\\ 2.3\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 9.0\pm2\\ 9.6\pm0.1\\ 1.9\pm0.1\\ 1.51\pm1\\ 4.7\pm0.2 \end{array}$	$\begin{array}{c} 24\pm 4\\ 90\pm 30\\ 30\pm 6\\ 1\pm 0\\ 22\pm 1\\ 1.3\pm 0.1\\ -4.6\pm 0.4\\ 85\pm 2\\ 9.0\pm 0.1\\ 18\pm 0.1\\ 153\pm 1\\ 4.7\pm 0.3\end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 w Serum (Ref J TP (5.0 Albumin Globulin	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean at eeks and 12 weeks Chemistry Range) **	0.72 0.17 0.29 and SEM of serves s of an oral 2 mg Week 0 6.1 = 0.1 3.5 ± 0.1	toring may differ be in and few changes nal supplementation dimine amino trans on chemistry pa- g/kg CBD dose tw Week 4 5.9 ± 0.2 3.5 ± 0.1	tween in the over ferase rameters imme fice daily using Week 8 6.3 ± 0.2 3.5 ± 0.1	a CBD-rich hen Week 12 6.0 ± 0.2 3.4 ± 0.1	p-Value 0.65 0.22
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) reatinine (16–24 mg/dL) Schorous (24–8.2 mg/dL) Glucose (64–170 mg/dL) Jalcium (82–10.8 mg/dL) agnesium (1.5–2.5 mEg/L) oodium (145–158 mEg/L) dotasium (3.4–5.6 mEg/L) hloride (104–128 mEg/L)	$\begin{array}{c} 4.0\pm0.2\\ 2.1\pm2\\ 5.1\pm5\\ 3.0\pm5\\ 1\pm0\\ 2.3\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 9.0\pm2\\ 9.6\pm0.1\\ 1.9\pm0.1\\ 15.1\pm1\\ 4.7\pm0.2\\ 119\pm1\\ \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.3 \\ 46 \pm 0.3 \\ 85 \pm 2 \\ 9.0 \pm 0.1 \\ 1.8 \pm 0.0 \\ 153 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 wi (Ref J TP (5.0) Albumin Globulin i AST (1	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean at eeks and 12 weeks Chemistry Range) **)-7.4 g/dL) (2.7-4.4 g/dL) (1.6-3.6 g/dL)	0.72 0.17 0.29 and SEM of serves s of an oral 2 mg Week 0 6.1 = 0.1 3.5 ± 0.1 2.6 = 0.1	tosing may differ be in and few changes all supplementation danine amino trans transformed transformed trans- transformed transformed trans- gring CBD dose two Week 4 5.9 ± 0.2 3.5 ± 0.1 2.5 ± 0.1	tween in the over rameters immwice daily using Week 8 6.3 ± 0.2 3.5 ± 0.1 2.9 ± 0.1	a CBD-rich hen Week 12 6.0 ± 0.2 3.4 ± 0.1 2.6 ± 0.2	p-Value 0.65 0.22 0.18
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) septarous (2.4–8.2 mg/dL) septarous (2.4–8.2 mg/dL) alcium (8.2–10.8 mg/dL) algensium (1.5–2.5 mg/dL) odium (145–158 mg/dL) odium (145–158 mg/dL) tassium (3.4–5.6 mg/dL) holeide (104–128 mg/dL) solesterol (75–220 mg/dL)	$\begin{array}{c} 4.0\pm0.2\\ 2.1\pm2\\ 5.1\pm5\\ 3.0\pm5\\ 1\pm0\\ 2.3\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 9.0\pm2\\ 9.6\pm0.1\\ 1.9\pm0.1\\ 1.51\pm1\\ 4.7\pm0.2 \end{array}$	$\begin{array}{c} 24\pm 4\\ 90\pm 30\\ 30\pm 6\\ 1\pm 0\\ 22\pm 1\\ 1.3\pm 0.1\\ -4.6\pm 0.4\\ 85\pm 2\\ 9.0\pm 0.1\\ 18\pm 0.1\\ 153\pm 1\\ 4.7\pm 0.3\end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 wi (Ref J TP (5.0 Albumin i Globulin (AST (1) ALT (1)	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean az ecks and 12 weeks Chemistry Range) **)-7.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.6-3.6 g/dL) (5-66 U/L)	0.72 0.17 0.29 nd 5EM of seru s of an oral 2 mg Week 0 6.1 = 0.1 3.5 = 0.1 2.6 = 0.1 2.7 ± 2	tosing may differ be in and few changes alsupplementation damine amino trans- irm chemistry pa- glog CBD dose tw Week 4 5.9 \pm 0.2 3.5 \pm 0.1 2.5 \pm 0.1 2.5 \pm 2	tween in the over rameters imme- fice daily using Week 8 6.3 ± 0.2 3.5 ± 0.1 2.9 ± 0.1 2.3 ± 2	a CBD-rich hen Week 12 6.0 ± 0.2 3.4 ± 0.1 2.6 ± 0.2 25 ± 1	p-Value 0.65 0.22 0.18 0.45
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GCT (1–10 U/L) BUN (14–36 mg/dL) sephorous (2.4–8.2 mg/dL) sephorous (2.4–8.2 mg/dL) alcaose (64–170 mg/dL) alcaose (64–170 mg/dL) adcium (3.2–10.8 mg/dL) odium (145–158 mEa/L) sassium (3.4–5.6 mEa/L) hotide (104–128 mEa/L) solesterol (75–220 mg/dL) algoerides (25–160 mg/dL)	$\begin{array}{c} 4.0\pm0.2\\ 21\pm2\\ 51\pm5\\ 30\pm5\\ 1\pm0\\ 23\pm1\\ 1.3\pm0.1\\ 4.5\pm0.4\\ 90\pm2\\ 9.6\pm0.1\\ 1.9\pm0.1\\ 1.51\pm1\\ 4.7\pm0.2\\ 119\pm1\\ 139\pm9 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.1 \\ 4.6 \pm 0.4 \\ 8.5 \pm 2 \\ 9.0 \pm 0.1 \\ 1.8 \pm 0.1 \\ 153 \pm 1 \\ 4.7 \pm 0.3 \\ 121 \pm 1 \\ 123 \pm 6 \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 we Serum (Ref J Globalin 1 Globalin 1 ALT (1: ALT (2: ALT (2: A	3.9 ± 0.2 24 ± 3 75 ± 15 g (n = 8) mean a: ecks and 12 weeks Chemistry Range) ** 1-7.4 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (1.6-3.6 g/dL) 15-66 U/L) 2-118 U/L) 1-12 U/L)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\$	$\begin{split} & tsing may differ be in and few changes in and few changes and a supplementation. There are an isophysical strain in the ministry paraging CBD does two the transformation of t$	$\begin{tabular}{ c c c c } tween & & & & & \\ in the & & & & & \\ over & & & & \\ erase & & & \\ \hline erase & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	a CBD-rich hen Week 12 6.0 ± 0.2 3.4 ± 0.1 2.6 ± 0.2 25 ± 1 28 ± 3 61 ± 13 4 ± 0	p-Value 0.65 0.22 0.18 0.45 0.57 0.09 0.72
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) sphorous (2.4–8.2 mg/dL) sphorous (2.4–8.2 mg/dL) alacose (64–170 mg/dL) alacose (64–170 mg/dL) alacose (64–170 mg/dL) adium (15–158 mEa/L) sphorous (15–2.5 mEa/L) horide (104–128 mEa/L) horide (104–128 mEa/L) alacose (75–220 mg/dL) atine Kinase (59–529 U/L)	$\begin{array}{c} 4.0\pm0.2\\ 21\pm2\\ 51\pm5\\ 30\pm5\\ 1\pm0\\ 23\pm1\\ 13\pm0.1\\ 4.5\pm0.4\\ 90\pm2\\ 9.6\pm0.1\\ 1.9\pm0.1\\ 151\pm1\\ 4.7\pm0.2\\ 119\pm1\\ 139\pm9\\ 32\pm1\\ 197\pm31\\ \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.1 \\ 4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.1 \\ 18 \pm 0.1 \\ 153 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 wi (Ref J TP (5.0 Albumin 1 Globulin 1 ALP (5 GGT (ALT (1) ALP (5 GGT (BUN (6	3.9 ± 0.2 24 ± 3 75 ± 15 cecks and 12 weeks Chemistry Range) ** 1-7.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-1.4 g/dL) (2.7-1.4 g/dL) -1.12 U/L) -31 mg/dL)	$\begin{array}{c} 0.72 \\ 0.17 \\ 0.29 \\ \hline \end{array}$	$\label{eq:second} \begin{split} & tsing may differ be \\ m and few changes \\ and lawplementation \\ lamine amino trans \\ um chemistry pa \\ g/kg CBD dose tw \\ \hline \hline \\ & Week 4 \\ \hline \\ & 5.9 \pm 0.2 \\ 3.5 \pm 0.1 \\ 2.5 \pm 0.1 \\ 2.5 \pm 0.1 \\ 2.5 \pm 0.2 \\ 3.5 \pm 0.1 \\ 2.5 \pm$	$\begin{tabular}{ c c c c c } tween & & & & & & & & & & & & & & & & & & $	a CBD-rich hen Week 12 6.0 ± 0.2 3.4 ± 0.1 2.6 ± 0.2 25 ± 1 28 ± 3 61 ± 13 4 ± 0 11 ± 0	p-Value 0.65 0.22 0.18 0.45 0.57 0.09 0.72 0.82
AST (10–100 U/L) ALT (10–100 U/L) ALP (6-102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) spherous (24–8.2 mg/dL) spherous (24–8.2 mg/dL) alcium (82–108 mg/dL) alcium (15–2.5 mEg/L) odium (145–158 mEg/L) odium (145–158 mEg/L) noride (104–128 mEg/L) noride (104–128 mEg/L) noride (104–128 mEg/L) spherotes (25–160 mg/dL) alcium (35–50 mg/dL) alcium (35–50 mg/dL) alcium (35–50 mg/dL) spherotes (35–50 mg/dL) alcium (35–50 mg/dL)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.1 \\ - \\ 46 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.1 \\ - \\ 1.8 \pm 0.1 \\ 153 \pm 1 \\ 4.7 \pm 0.3 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \\ (005) \text{ different} \end{array}$	24±3 76±17 Table 4. Dog 4 weeks, 8 wi Serum (Ref J TP (5.0) Albumin i Globulin (ALT (1) ALP (5 GGT (BUN (BUN (BUN (3.9 ± 0.2 24 ± 3 75 ± 15 (n = 8) mean a: eeeks and 12 weeks Chemistry Range) ** -74 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.13 U/L) 3-131 U/L) 1-12 U/L) 3-131 U/L) (0.5-1.6 mg/dL)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\ \hline \end{array}$ nd 5EM of serves of an oral 2 mg Week 0 6.1 = 0.1 3.5 = 0.1 2.6 = 0.1 2.7 ± 2 3.9 ± 6 4 ± 0 11 ± 1 0.5 ± 0.0	$\label{eq:constraint} \begin{split} & to sing may differ be \\ m and few changes \\ all supplementation \\ limit meaning transmission \\ provide the transmission \\ respective \\ \hline \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline $		a CBD-rich hen Week 12 6.0 ± 0.2 3.4 ± 0.1 2.6 ± 0.2 25 ± 1 28 ± 3 61 ± 13 4 ± 0 11 ± 0 0.5 ± 0.0	p=Value 0.65 0.22 0.18 0.45 0.57 0.57 0.09 0.72 0.82 0.36
AST (10–100 U/L) ALT (10–100 U/L) ALP (6-102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) spherous (24–8.2 mg/dL) spherous (24–8.2 mg/dL) alcium (82–108 mg/dL) alcium (15–2.5 mEg/L) odium (145–158 mEg/L) odium (145–158 mEg/L) noride (104–128 mEg/L) noride (104–128 mEg/L) noride (104–128 mEg/L) spherotes (25–160 mg/dL) alcium (35–50 mg/dL) alcium (35–50 mg/dL) alcium (35–50 mg/dL) spherotes (35–50 mg/dL) alcium (35–50 mg/dL)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.1 \\ 4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.1 \\ 1.8 \pm 0.1 \\ 1.53 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 2.8 \pm 2 \\ 113 \pm 15 \\ 0.026 \\ \text{different} \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 wi Serum (Ref J TP (5.0) Albumin Globalin () AST () ALT (0) ALT (0) BUN (6 GGT () BUN (6 Creatinine () Phosphorous	3.9 ± 0.2 24 ± 3 75 ± 15 (n = 8) mean a: ecks and 12 weeks Chemistry Range) ** 1-7.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.6-5.4 g/dL) 15-66 U/L) 2-118 U/L) 1-12 U/L) -31 mg/dL) (0.5-6.6 mg/dL) (2.5-6.0 mg/dL)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\$	$\begin{split} & tsing may differ be \\ m and few changes \\ m and few changes \\ and few changes \\ and few changes \\ m chemistry passing \\ g/g CBD dose tw \\ \hline \\ $	$\begin{tabular}{ c c c c } tween & & & & & & & & & & & & & & & & & & $	$\begin{array}{c} a \ CBD\ rich\ hen \\ \hline \hline \\ \hline $	p-Value p-Value 0.65 0.22 0.18 0.45 0.57 0.09 0.72 0.82 0.36 0.11
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) sephorous (24–6.2 mg/dL) lacose (64–170 mg/dL) alcium (82–10.8 mg/dL) alcium (15–2.5 mBg/L) odium (145–158 mBg/L) odium (145–158 mBg/L) horide (104–128 mBg/L) horide (104–128 mBg/L) horide (25–160 mg/dL) alcium (83–5.6 mBg/L) horide (25–160 mg/dL) ghorestria a parameter that was s	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.1 \\ - \\ 46 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.1 \\ - \\ 1.8 \pm 0.1 \\ 153 \pm 1 \\ 4.7 \pm 0.3 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \\ (005) \text{ different} \end{array}$	24±3 76±17 Table 4. Dog 4 weeks, 8 wi (Ref J TP (5.0 Albumin 1 Globalin 1 ALP (6 GGT (BUN (6 Creatinine (Phesphorous Glucose (7	3.9 ± 0.2 24 ± 3 75 ± 15 (n = 8) mean a: eeks and 12 weeks Chemistry Rangel ** -7.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.6 g/dL) (2.7-18 U/L) -31 mg/dL) (0.5-4.6 mg/dL) (0.5-6.6 mg/dL) (0.5-6.8 mg/dL) (0.5-6.8 mg/dL)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\ \end{array}$ and SEM of seru s of an oral 2 mg $\hline \hline \\ \hline$	$ \begin{split} & tsing may differ be \\ m and few changes \\ and few changes \\ alsupplementation \\ terms amino trans \\ um chemistry pa \\ g/g C BD dose tw \\ \hline \\ $	$\begin{tabular}{ c c c c c } tween & & & & & & & & & & & & & & & & & & $	a CBD-rich hen Week 12 6.0 ± 0.2 3.4 ± 0.1 2.6 ± 0.2 25 ± 1 28 ± 3 61 ± 13 4 ± 0 11 ± 0 0.5 ± 0.0 4.0 ± 0.2 99 ± 2	p=Value 0.65 0.22 0.18 0.45 0.57 0.09 0.72 0.82 0.82 0.62 0.11 0.16
AST (10-100 U/L) ALT (10-100 U/L) ALP (6-102 U/L) GGT (1-10 U/L) BUN (14-36 mg/dL) sephorous (24-8.2 mg/dL) bephorous (24-8.2 mg/dL) alcium (82-108 mg/dL) alcium (15-2.5 mBg/L) odium (145-158 mBg/L) odium (145-158 mBg/L) horide (104-128 mBg/L) horide (104-128 mBg/L) horide (104-128 mBg/L) alcium (3.4-5.6 mBg/L) horide (104-128 mBg/L) horide (104-128 mBg/L) alcium (3.4-5.6 mBg/L) block (104-128 mBg/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.1 \\ 4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.1 \\ 1.8 \pm 0.1 \\ 1.53 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 2.8 \pm 2 \\ 113 \pm 15 \\ 0.026 \\ \text{different} \end{array}$	24±3 76±17 Table 4. Doy 4 weeks, 8 wi Serum (Ref J TP (5.0) Albumin i Globulin i ALP (5 GGT (BUN (6 Creatinine (Phosphorous Glucose (7 Caldium (8	3.9 ± 0.2 24 ± 3 75 ± 15 (n = 8) mean at eeeks and 12 weeks Chemistry Range) ** 1-74 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (27-4.6 g/dL) (27-118 U/L) 3-131 U/L) (25-6.6 mg/dL) (25-6.6 mg/dL) (25-6.6 mg/dL) (25-6.6 mg/dL) (25-1.6 mg/dL) (25-1.4 mg/dL)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\ \hline \end{array}$ and 5EM of serve s of an oral 2 mg Week 0 $\begin{array}{c} 6.1 \pm 0.1\\ 3.5 \pm 0.1\\ 2.6 \pm 0.1\\ 2.7 \pm 2\\ 34 \pm 3\\ 39 \pm 6\\ 4 \pm 0\\ 11 \pm 1\\ 0.5 \pm 0.0\\ 4.3 \pm 0.2\\ 97 \pm 3\\ 10.4 \pm 0.1\end{array}$	$\begin{array}{c} issing may differ be m and few changes m and few changes m and few changes m and m parameters from m chemistry parameters m chemistry parameters m for m and m	$\begin{array}{c} \text{tween} \\ \text{in the} \\ \text{over} \\ \hline \\ \text{ferare} \\ \hline \\ farmeders immediate imme$	$\begin{array}{c} a {\Bbb CBD} \text{-rich hen} \\ \hline \\ $	p-Value p-Value 0.65 0.22 0.18 0.45 0.57 0.09 0.72 0.82 0.36 0.11 0.16 0.16
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) reatinine (0.6–24 mg/dL) Schoross (24–8.2 mg/dL) Schoross (64–170 mg/dL) Schoross (64–170 mg/dL) indium (13–5.48 mEg/L) indium (13–5.48 mEg/L) indium (13–5.48 mEg/L) holesterol (75–220 mg/dL) schorost (75–220 mg/dL) schorost (75–220 mg/dL) entrestinas (59–529 U/L) entrestinas (59–529 U/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.4 \\ -4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.4 \\ 153 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \\ (0.05) different \\ and adverse \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 wi Serum (Ref J TP (5.0) Albuin 1 Albuin 1 AST (1 ALT (0) ALT (0) ALT (0) GGT (BUN (6 Creatinne (Phosphorous Glucose (7 Calcium (8 Magnesium	3.9 ± 0.2 24 ± 3 75 ± 15 (n = 8) mean a: ecks and 12 weeks Chemistry Range) ** 0-7.4 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (27-4.4 g/dL) (1.6-3.6 g/dL) (1.6-3.6 g/dL) (1.6-3.6 g/dL) (1.5-6.6 mg/dL) (0.5-6.6 mg/dL) (0.5-6.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-2.5 mfg/L) (0.5-2.5 mfg/L)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\$	$\begin{split} & tsing may differ be \\ m and few changes \\ m and few changes \\ and few changes \\ and few changes \\ glyg CBD dose tw \\ & \\ \hline & \\ & \\ \hline & \\ & \\ & \\ & \\ & \\ &$	$\begin{array}{c} \text{tween} \\ \text{ in the} \\ \text{ over} \\ \hline \\ \text{ferase} \\ \hline \\ rameters immediate simulation of the set of th$	$\begin{array}{c} a \ \text{CBD-rich hen} \\ \hline \\ $	p-Value 0.65 0.22 0.18 0.45 0.57 0.09 0.45 0.69 0.09 0.82 0.36 0.11 0.16 0.11
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) reatinine (16–24 mg/dL) Bucse (64–170 mg/dL) alciam (82–10.8 mg/dL) alguesium (1.5–2.5 mf/gL) odium (145–158 mf/gL) horide (104–128 mf/gL) horide (104–128 mf/gL) horide (104–128 mf/gL) atosites (75–220 mg/dL) glycerides (25–160 mg/dL) attine Kinase (59–529 U/L) eptersents a parameter that was s	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.4 \\ -4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.4 \\ 153 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \\ (0.05) different \\ and adverse \end{array}$	24±3 76±17 Table 4. Dog 4 weeks, 8 wi (Ref J TP (5.0 Albumin (Globulin (ALT (1) ALT (1) ALT (1) ALT (2) GGT (BUN (6 Creatinine (Phosphorotas Glucos (7 Calcium (8) Magnesium Sodium (12)	3.9 ± 0.2 24 ± 3 75 ± 15 (n = 8) mean a: eeeks and 12 weeks Chemistry Kangel ** -7.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-6 b(L) 2-118 U/L) -131 mg/dL) (0.5-2.6 mg/dL) (0.5-2.5 mg/dL) 9-114 mg/dL) (1.5-2.5 mg/dL) 9-154 mg/dL)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\ \hline \end{array}$ and SEM of seru s of an oral 2 mg $\hline \hline \\ \hline$	$ \begin{split} & tsing may differ be \\ m and few changes \\ m and few changes \\ alsupplementation \\ transmission \\ transmi$	$\begin{array}{c} \text{tween} \\ \text{ in the} \\ \text{ over} \\ \hline \\ \text{ferase} \\ \hline \\ \text{rameters immediate measurements} \\ \hline \\ $	$\begin{array}{c} a {\mathbb C} {\mathbb B} {\mathbb D} \text{-rich hen} \\ \hline \\ $	p-Value p-Value 0.65 0.22 0.18 0.45 0.45 0.45 0.45 0.09 0.72 0.82 0.82 0.11 0.16 0.16 0.16 0.16 0.16
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) reatinine (0.6–24 mg/dL) Schoross (24–8.2 mg/dL) Schoross (64–170 mg/dL) Schoross (64–170 mg/dL) indium (13–5.48 mEg/L) indium (13–5.48 mEg/L) indium (13–5.48 mEg/L) holesterol (75–220 mg/dL) schorost (75–220 mg/dL) schorost (75–220 mg/dL) entrestinas (59–529 U/L) entrestinas (59–529 U/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.4 \\ -4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.4 \\ 153 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \\ (0.05) different \\ and adverse \end{array}$	24±3 76±17 Table 4. Doy 4 weeks, 8 wi Serum (Ref J TP (5.0) Albumin 1 Globulin 1 Globulin 1 ALP (5 GGT (BUN (6 Creatinine (Phosphorous Glucose (7 Calcium (8 Magnesium Sodium (13 Potassium (1	3.9 ± 0.2 24 ± 3 75 ± 15 (t = 8) mean a: eeks and 12 weeks Chemistry Range) ** 1-74 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.6 g/dL) (2.7-6.0 mg/dL) (2.5-6.6 mg/dL) (2.5-6.6 mg/dL) (2.5-6.6 mg/dL) (2.5-6.6 mg/dL) (2.5-6.5 mEg/L) (3.6-5.5 mEg/L)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\ \hline \end{array}$ and SEM of serve s of an oral 2 mg Week 0 $\begin{array}{c} 6.1 \pm 0.1\\ 3.5 \pm 0.1\\ 2.6 \pm 0.1\\ 2.7 \pm 2\\ 34 \pm 3\\ 39 \pm 6\\ 4 \pm 0\\ 11 \pm 1\\ 0.5 \pm 0.0\\ 4.3 \pm 0.2\\ 97 \pm 3\\ 10.4 \pm 0.1\\ 1.6 \pm 0.0\\ 148 \pm 0\\ 4.3 \pm 0.1\\ \end{array}$	$\begin{array}{c} issing may differ be m and few changes m and few changes m and few changes m and m frame amino trans m chemistry particle m frame amino trans m frame amino trams m fra$	$\begin{array}{c} \text{tween} \\ \text{in the} \\ \text{over} \\ \hline \\ \text{ferase} \\ \hline \\ farmedetrs immediates immediates immediates immediates immediates immediates immediates \\ \hline \\ $	$\begin{array}{c} a {\mathbb C} {\mathbb B} D\text{-rich hen}\\ \hline \\ \hline$	p=Valus p=Valus 0.65 0.22 0.18 0.45 0.57 0.09 0.72 0.82 0.36 0.11 0.16 0.16 0.11 0.16 0.12 0.36 0.22 0.36 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.45 0.45 0.45 0.57 0.09 0.72 0.72 0.72 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.72 0.75
AST (10–100 U/L) ALT (10–100 U/L) ALP (6–102 U/L) GGT (1–10 U/L) BUN (14–36 mg/dL) reatinine (0.6–24 mg/dL) Schoross (24–8.2 mg/dL) Schoross (64–170 mg/dL) Schoross (64–170 mg/dL) indium (13–5.48 mEg/L) indium (13–5.48 mEg/L) indium (13–5.48 mEg/L) holesterol (75–220 mg/dL) schorost (75–220 mg/dL) schorost (75–220 mg/dL) entrestinas (59–529 U/L) entrestinas (59–529 U/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.4 \\ -4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.4 \\ 153 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \\ (0.05) different \\ and adverse \end{array}$	24 ± 3 76 ± 17 Table 4. Dog 4 weeks, 8 wi Serum (Ref J TP (5.0) Albumin Globulin (ALT (1) ALT (1) ALT (2) GGT (BUN (6 Creatinine (Phesphorous Glucose (7 Calcium (8 Magnesium Sodium (1) Potassium (Chloride (1)	3.9 ± 0.2 24 ± 3 75 ± 15 (n = 8) mean a: ecks and 12 weeks Chemistry Range) ** 1-7.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (1.6-3.6 g/dL) (1.6-3.6 g/dL) (2.5-6.0 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (0.5-1.6 mg/dL) (1.5-2.5 mEg/L) (1.5-2.5 mEg/L	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\$	$\begin{split} & tsing may differ be \\ & m and few changes \\ & m and few changes \\ & al supplementation \\ & transmission \\ & transmissio$	$\begin{array}{c} \text{tween} \\ \text{ in the} \\ \text{ over} \\ \hline \\ \text{ferase} \\ \hline \\ rameters immediate and the set of t$	$\begin{array}{c} a {\mathbb C} {\mathbb B} D\text{-rich hen} \\ \hline \\ $	p-Value p-Value 0.65 0.22 0.18 0.45 0.57 0.09 0.72 0.82 0.36 0.11 0.16 0.16 0.11 0.16 0.16 0.13 0.74
ALT (10-100 U/L) ALP (6-102 U/L) GGT (1-10 U/L)	$\begin{array}{c} 4.0 \pm 0.2 \\ 21 \pm 2 \\ 51 \pm 5 \\ 30 \pm 5 \\ 1 \pm 0 \\ 23 \pm 1 \\ 1.3 \pm 0.1 \\ 4.5 \pm 0.4 \\ 90 \pm 2 \\ 9.6 \pm 0.1 \\ 1.9 \pm 0.1 \\ 151 \pm 1 \\ 4.7 \pm 0.2 \\ 119 \pm 1 \\ 139 \pm 9 \\ 32 \pm 1 \\ 197 \pm 31 \end{array}$	$\begin{array}{c} 24 \pm 4 \\ 90 \pm 30 \\ 30 \pm 6 \\ 1 \pm 0 \\ 22 \pm 1 \\ 1.3 \pm 0.4 \\ -4.6 \pm 0.4 \\ 85 \pm 2 \\ 9.0 \pm 0.4 \\ 153 \pm 1 \\ 4.7 \pm 0.2 \\ 121 \pm 1 \\ 123 \pm 6 \\ 28 \pm 2 \\ 113 \pm 15 \\ (0.05) different \\ and adverse \end{array}$	24±3 76±17 Table 4. Dog 4 weeks, 8 wi (Ref J TP (5.0 Albumin () Globalin () ALT (1) ALT (1) ALT (1) ALT (1) ALT (1) ALT (1) GGC (BUN (6 Creatinine () Phosphorotas Glacose (7 Calcium (1) Potassium (1) Potassium (1) Potassium (1) Potassium (1) Choleide (1) Choleide (1)	3.9 ± 0.2 24 ± 3 75 ± 15 (t = 8) mean a: eeks and 12 weeks Chemistry Range) ** 1-74 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.4 g/dL) (2.7-4.6 g/dL) (2.7-6.0 mg/dL) (2.5-6.6 mg/dL) (2.5-6.6 mg/dL) (2.5-6.6 mg/dL) (2.5-6.6 mg/dL) (2.5-6.5 mEg/L) (3.6-5.5 mEg/L)	$\begin{array}{c} 0.72\\ 0.17\\ 0.29\\ \hline \end{array}$ and SEM of serve s of an oral 2 mg Week 0 $\begin{array}{c} 6.1 \pm 0.1\\ 3.5 \pm 0.1\\ 2.6 \pm 0.1\\ 2.7 \pm 2\\ 34 \pm 3\\ 39 \pm 6\\ 4 \pm 0\\ 11 \pm 1\\ 0.5 \pm 0.0\\ 4.3 \pm 0.2\\ 97 \pm 3\\ 10.4 \pm 0.1\\ 1.6 \pm 0.0\\ 148 \pm 0\\ 4.3 \pm 0.1\\ \end{array}$	$\begin{array}{c} issing may differ be m and few changes m and few changes m and few changes m and m frame amino trans m chemistry particle m frame amino trans m frame amino trams m fra$	$\begin{array}{c} \text{tween} \\ \text{in the} \\ \text{over} \\ \hline \\ \text{ferase} \\ \hline \\ farmedetrs immediates immediates immediates immediates immediates immediates immediates \\ \hline \\ $	$\begin{array}{c} a {\mathbb C} {\mathbb B} D\text{-rich hen}\\ \hline \\ \hline$	p=Valus p=Valus 0.65 0.22 0.18 0.45 0.57 0.09 0.72 0.82 0.36 0.11 0.16 0.16 0.11 0.16 0.12 0.36 0.22 0.36 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.22 0.18 0.45 0.45 0.45 0.45 0.57 0.09 0.72 0.72 0.72 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.72 0.75


Klaassen, J.K. Reference values in veterinary medicine. Lab Med, 1999, 30, 194–19

Safety? 6 month Dogs – 4 mg/kg SID

Long-term daily feeding of cannabidiol is well-tolerated by healthy dogs


Sophie Bradley, Scott Young, Anne Marie Bakke, Lucy Holcombe, Daniel Waller, Alysia Hunt, Kathleen Pinfold, Phillip Watson and Darren W. Logan*

Waltham Petcare Science Institute, Waltham-on-the-Wolds, Melton Mowbray, United Kingdom

Plasma activity levels of total alkaline phosphatase (ALP; U/L; mean and 95% confidence intervals) in dogs dosed with CBD (red) and placebo (blue). Week 0 depicts the baseline measure before daily oral dosing of CBD/placebo. Dotted line depicts upper and lower reference ranges as specified by IDEXX Laboratories. *Depicts significant differences between the experimental groups (p < 0.001).

Serum activity levels of bone-specific alkaline phosphatase (BALP; mean and 95% confidence intervals) in dogs dosed with CBD (red) and placebo (blue) at baseline and 26 weeks. *Depicts significant differences between the experimental groups (p < 0.001).

Being Cost Conscious

Not All CBD Products are Created Equal

The same size bottle can contain very different amounts of cannabinoids. See how ElleVet compares to 5 well known brands.

	Α	В	С	ElleVet	D	E
mg/mL	12.5	4	10.6	70	12.8	4.8
Days product lasts*	6	2	9.4	31.1	6	2.3
Price	\$132	\$39.95	\$65.00	\$129.99	\$85.99	\$84.08
\$ per mg	\$0.33	\$0.34	\$0.11	\$0.06	\$0.23	\$0.56

*Days calculated using 1mg/kg for a 70lb dog

"Cannabis is a heterogenous botanical mixture and the results from one study cannot to be applied generally to other plants or products."

- Dr. Ethan Russo

FILeVet

The beginning of a Journey in Vet Med!

- Need to understand oral availability.
- Need to understand toxicity (covered last week).
- Need to understand Drug interactions.
- Need to understand the synergies with other meds.
- There is a lot to understand and we have many species!

Can Dogs Absorb CBD after oral consumption?

Vol. 16, No. 3 Printed in U.S.A.

 $\frac{C_b}{C_c} = \frac{C_{bl}}{C_c} \times HCT + (1 - HCT)$

where C_b/C_p is the blood-plasma concentration ratio, C_{bs}/C_p is the blood

cell-plasma concentration ratio, and HCT is the hema

090-9556/88/1603-0469\$02.00/ DRUG METABOLISM AND DISPOSITION Copyright © 1988 by The American Society for Pharmacology and Experimental Therapeutics PHARMACOKINETICS OF CANNABIDIOL IN DOGS EMIL SAMARA, MEIR BIALER, AND RAPHAEL MECHOULAN Department of Pharmacy (E.S., M.B.) and Department of Natural Products (E.S., R.M.), School of Pharmacy, Hebrew Univ Received August 10, 1987; accepted November 16, 1987 ABSTRACT Cannabidiol (CBD) is one of the major nonpsychoactive cannabinoids value, after its normalization to blood clearance using m produced by Cannabis settire L. Recent studies have shown that CBD equations, approaches the value of the hepatic blood flow; the extraction ratio in the liver is 0.74. CBD was observed to have a larg has a high protective index, comparable to that of phenoberbital and volume of distribution, approximately 100 liters. In the does range of phenytoin. Because CBD has been reported to possess both anti-45 to 90 mg, the increase in the AUC was proportional to the dose. isant and antieplieptic activity, its pharmacokinetics were studa fact that indicates that the pharmacokinetic profile of CBD in this led in dogs after the administration of two ly doees (45 and 90 mg) dose range was not dose dependent. In three of the six dogs studied and one oral dose (180 mg) to dogs. After iv administration, CBD CBD could not be detected in the plasma after oral adm was rapidly distributed, followed by a prolonged elimination. It has a In the other three, the oral bioevallability ranged from 13 to 19%. The terminal half-life of 9 hr. CBD plasma levels declined in a triphasic results of this study show that CBD is barely absorbed after oral rashion. The total body clearance of CBD was 17 liters/hr (after the administration to dogs. This low bioavailability may be due to a first 45-mg dose) and 16 liters/hr (after the 90-mg dose). This clearance pass effect. CBD¹ is one of the major cannabinoids produced by Cannabis stored at -20°C. Before assaying, the plasma was allowed to reach room sativa L. (1) and, although it was first isolated in 1940, its temperature and the residual clot was removed. Plasma levels of CBD structure was elucidated only 23 years later (2). In contrast to were assayed by an HPLC assay that we have already reported in detail the highly psychoactive major compound, THC, CBD has vir- (11). The linear terminal slope of log C (CBD plasma co tually no psychoactive propeties in humans (3-5). Nevertheless, (time) was calculated by the method of least squares. The terminal to of CBD possesses anticonvulsant activity in both animals and man CBD was calculated from the quotient: (0.69)/(terminal slope). The AUC (6, 7). Recent studies have shown that CBD has a high protective (area under the C vs. t curve) was calculated by using the transzoidal index, comparable to that of phenobarbital and phenytoin (6rule with extrapolation to infinity, by dividing the last experimental 8). Despite the fact that CBD is one of the main constituents of plasma concentration by the terminal slope (12). cannabis and the recent surge of interest in its medical applica-The total body clearance of CBD (CL) was calculated from the dosequotient and the AUC. The volume of distribution (V) was calculated tions, few reports have been published on its pharmacokinetics from the ratio of the clearance and the linear terminal slope. The volume The present study was undertaken to investigate the pharmaof distribution at steady state (V_m) and the mean residence time (MRT) cokinetics of CBD in dogs after the administration of two iv were calculated by using equations 1 and 2 (13-15) $V_{=} = \frac{D \cdot AUMC}{D \cdot AUMC}$ doses (45 and 90 mg) and one oral dose (180 mg). (AUC)² Materials and Method MRT = AUMC The experiments were conducted in six does (mongrels), three males and three females, all weighing between 16 and 24 kg. Each dog received, and time remarks, as weighing overview of an arrow design, it injections of CBD (45 or 90 mg in 1.5 ml of 70% alcohol) into the cephalic vein and an onal 91 mg in 1.5 ml of 70% alcohol) into the cephalic vein and an onal gelatin capsule containing 180 mg of CBD (in raw material form). Venous was calculated by the trapezoidal rule with extrapolation to infinity. All blood samples (8 ml) were collected via an indwelling catheter from the other cephalic vein at 0, 2, 5, 10, 15, 20, 30, 40, and 50 min and 1.0, pharmacokinetic parameters were calculated in a noncompartmental manner, based on the statistical moment theory (15, 16). 1.25, 1.5, 2.0, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10, 12, 14, 16, and 24 hr after The blood-plasma concentration ratio (17) of CBD (partition study) each of the two iv injections. After oral administration, the sampling was determined at room temperature by spiking known various amounts times were the same except for the first hour, in which blood was first of CBD in seven samples of fresh blood taken from a dog before drug rated by centrifugation at 7000 rpm for 15 min and was separated according to the procedure mentioned above. Plasma levels of CBD were determined by HPLC assay (11). The mean blood This paper is taken from the doctoral dissertation of Mr. Emil Samara, submitted cell plasma concentration ratio was calculated by means of the following

in partial fulfilment of the Ph.D. requirements of the Hebrew University of Jerusalem. Abbreviations used are CBD, cannabidiol: THC, Δ1-tetrahydrocannabinol: MFO

Bend reprint requests to: Meir Bialer, Department of Pharmacy, School of cv, Hebrew University, POB 12065, Jerusalem 91120, Israel.

 Major reason hemp was not well studied was 1980's study suggesting absorption was not all that good

 Suggested that a powder in a capsule showed approximately 0-13% absorption

 Was provided in a capsule form from Raw Material – unsure if pure

 Interestingly participated in a study and found dogs passing capsules in stool

Dog PK work!

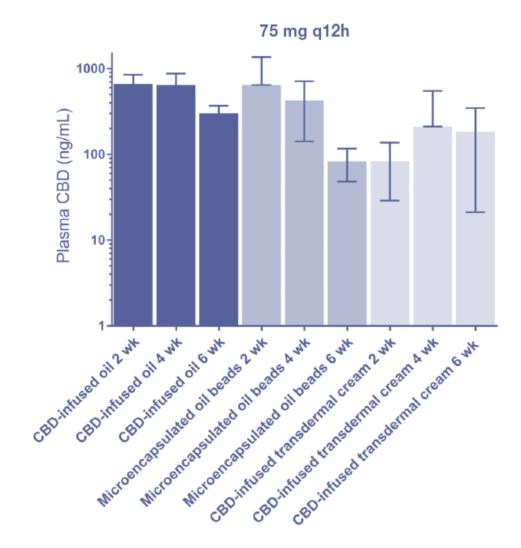
FlleVet

Article

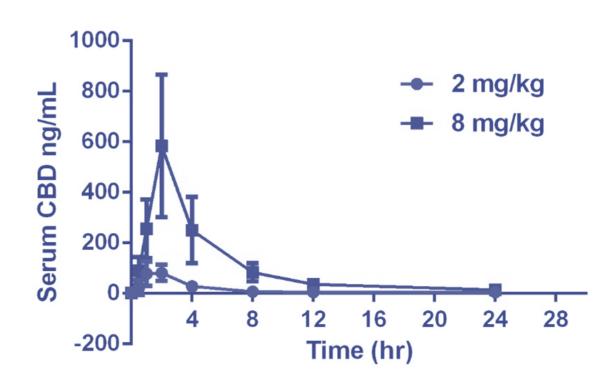
Pharmacokinetics of cannabidiol administered by 3 delivery methods at 2 different dosages to healthy dogs

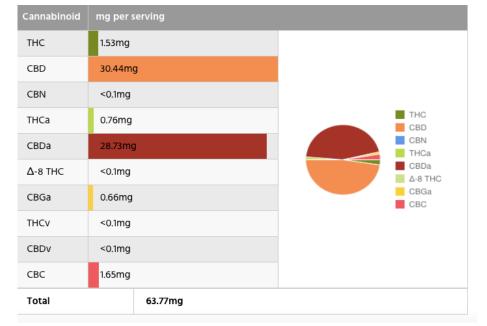
Lisa R. Bartner, Stephanie McGrath, Sangeeta Rao, Linda K. Hyatt, Luke A. Wittenburg

Table I. Dosing regimen for CBD administered to healthy beagle dogs.


Group (5 dogs/group)	Delivery method	Approximate dose (mg/kg body weight per day)	Dose (mg q12h)
1a	CBD-infused transdermal cream	10	75
1b	CBD-infused transdermal cream	20	150
2a	Microencapsulated oil beads	10	75
2b	Microencapsulated oil beads	20	150
За	CBD-infused oil	10	75
Зb	CBD-infused oil	20	150

2,4, and 6 weeks of dosing!


- Steady State pharmacokinetics at 10 mg/kg every 12 hrs
- Oil appears to reveal ave. 500 ng/ml
- 500 ng/mL = 1.4 uM
- Important since presumed receptors iterations are between 0.1-1 uM
 - So presumed above 50 ng/mL in blood should be enough for receptor interactions.
- Consequences of oral dosing for 6 weeks

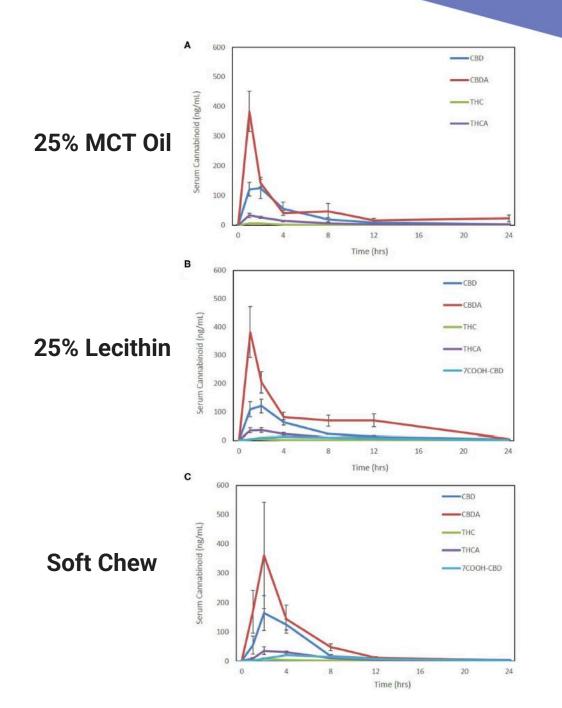

 elevations in ALP and some ALT

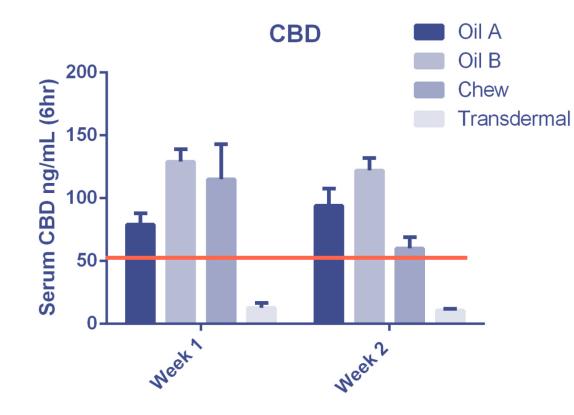
30

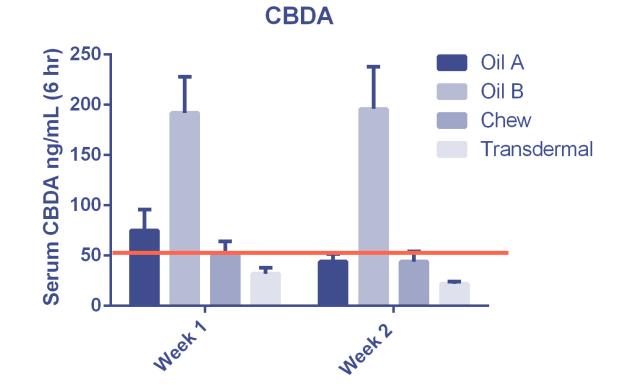
Serum concentration (ng/ml) of 2mg/kg and 8mg/kg oral dose CBD-CBDA (50:50 mix) oil over time!

	2 mg/kg oral	8 mg/kg oral
Cmax (ng/mL)	102	591
AUC (ng- h/mL)	367	2658
T ½ elim	4.2	4.2

Cannabinoids and Potential Therapeutically?

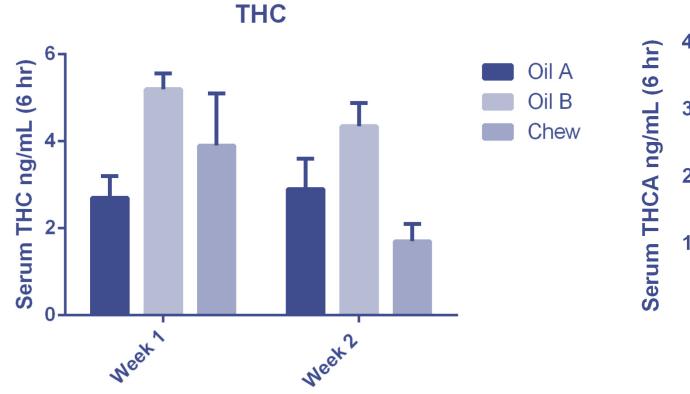

- Cannabidiol (CBD) potential therapeutic (inflammation, neuroprotection, neuropathic pain)
- Cannabidiolic Acid (CBDA) potential therapeutic (inflammation, neuroprotection, neuropathic pain)
- D9 tetrahydrocannabinol (THC) potential psychotropic actions after metabolism.
- 110H-Tetrahydrocannabinol (110H-THC) psychotropic active metabolite
- Tetrahydrocannabinolic acid (THCA) potential therapeutic (neuroprotective)
- 70H and 7C00H-cannabidiol (typical metabolites in humans)

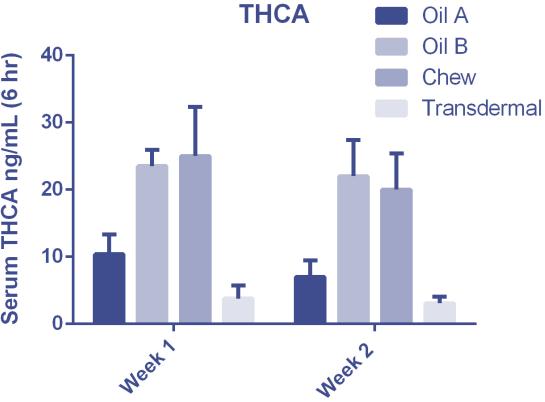

24 Hour Pharmacokinetics


- Metabolites of THC, 11-OH-THC, 7-OH-CBD, and COOH-THC-Glu all below the lower limit of quantitation
- Oil B with lecithin provides a larger AUC due to a lower level of absorption or less elimination from 4-24 hrs

Cannabidiols – 2 weeks

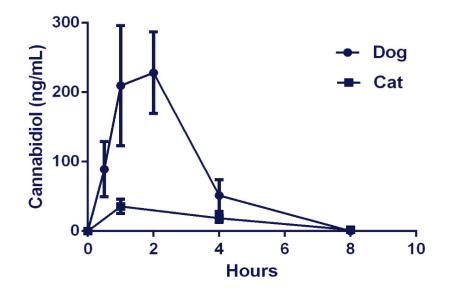
2 Weeks – mid point after last dose (6hrs)





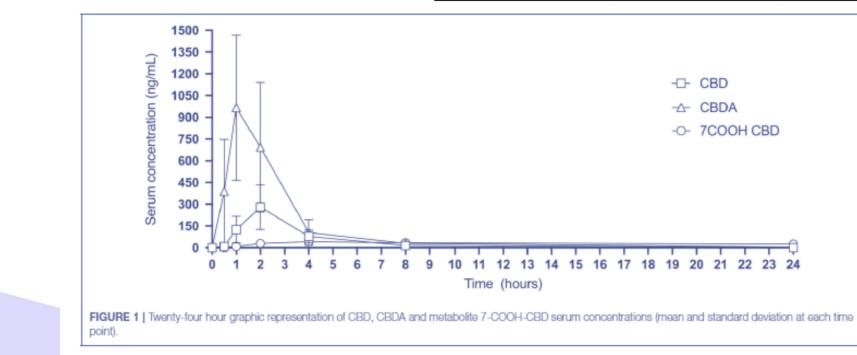
THC's – 2 weeks

2 Weeks – mid point after last dose (6hrs)



New Ellevet Cat PK Study – palatable paste!

- Biggest problem with cat complete spectrum products are palatability
- Oil tends to cause hypersalivation and head shaking
- We do not want to produce negative owner interactions
- Paste candidate was provided at approximately 3.2 mg/kg (1.6 mg CBD/CBDA/kg) to 8 cats at CRO
- Assessed daily PE and tolerance
- All cats took paste willingly.
- CBC and Chemistry evaluation prior to treatment and 1 week - No differences observed.
- 24 hour PK and week 1 steady state assessed

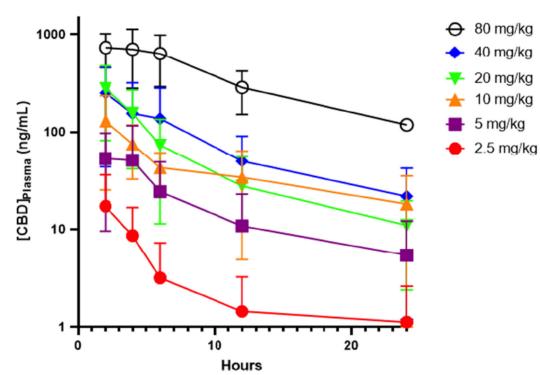


24 hour Pharmacokinetics of a Cat Paste

Serum Cannabinoid 24 h and 1 Week Steady State Pharmacokinetic Assessment in Cats Using a CBD/CBDA Rich Hemp Paste

Tongxin Wang¹, Alex Zakharov², Beatriz Gomez², Alex Lyubimov², Nathalie L. Trottier¹, Wayne S. Schwark³ and Joseph J. Wakshlag⁴⁺

	Fish Oil (1 mg/kg CBD)	Paste (1.6 mg/kg CBD)
Cmax (ng/mL)	43	282
AUC (ng-h/mL)	164	909
T1/2 el (hr)	1.5	2.0



Cats - Oils vs Paste! Whole vs isolate?

Pharmacokinetics of escalating single-dose administration of cannabidiol to cats

Plasma CBD Concentration vs. Time

Time 0 and the Time 24 evaluations. Creatine kinase activity was also consistently elevated at the 24-h blood draw compared to Time 0.

	Fish Oil (1 mg/kg CBD)	Paste (1.6 mg/kg CBD)	Sunflower oil (2.5 mg/kg CBD)	
Cmax (ng/mL)	43	282	18	
AUC (ng- h/mL)	164	909	83	
T1/2 el (hr)	1.5	2.0	2.0	

Steady State PK – acids vs neutrals?

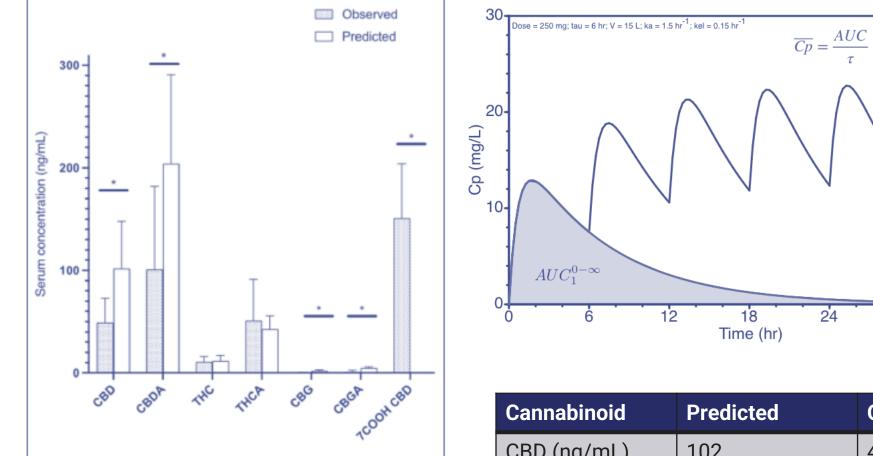
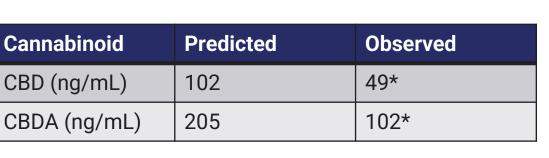



FIGURE 3 | All cannabinoids at 6-h post 13th dose showing observed steady state concentrations in serum of cats compared to predicted steady state after 5 half-life of administration based on the 24-h pharmacokinetic analysis (Mean and standard deviation). * represents a statistically significant difference (P < 0.05).

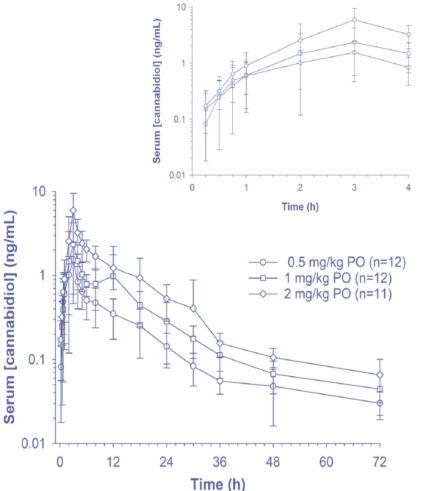
* Significantly different

 $AUC_{ss}^{0-\tau}$

36

 $t = \tau$

30


t = 0

Horse 24 hr CBD PK:

RESEARCH ARTICLE

WILEY

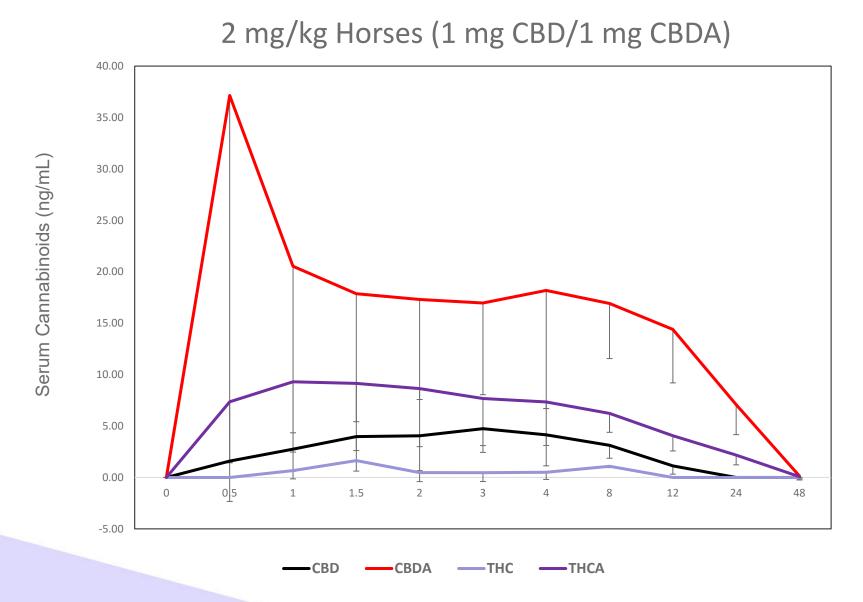
FIGURE 2 Average ± SD serum concentrations of cannabidiol with respect to time after a single oral administration of CBD (0.5, 1, and 2 mg/kg) to 12 horses Pharmacokinetics and effects on arachidonic acid metabolism of low doses of cannabidiol following oral administration to horses

Declan Ryan¹ | Dan S. McKemie¹ | Philip H. Kass³ | Birgit Puschner⁴ | Heather K. Knych^{1,2} ⁽³⁾

	Dose groups				
Parameters	0.5 mg/kg (n = 12)	1.0 mg/kg (n = 12)	2.0 mg/kg (n = 11)		
C _{max} ng/ml	1.69 ± 0.830 ^{b,c}	3.22 ± 2.18 ^{a,c}	$6.14 \pm 3.52^{a,b}$		
T _{max} (hr)	2.81 ± 0.984	4.75 ± 3.77	3.18 ± 0.982		
Lambda _z (1/hr)	0.072 ± 0.024	0.073 ± 0.023	0.078 ± 0.027		
HL Lambda _z (hr)	10.7 ± 3.61	10.6 ± 3.84	9.88 ± 3.53		
AUC _{0-inf} (hr*ng ml)	$13.2 \pm 4.73^{b,c}$	$23.5 \pm 7.47^{a,c}$	$44.2 \pm 16.2^{a,b}$		
AUC extrap (%)	$19.6 \pm 10.7^{b,c}$	$9.79 \pm 5.65^{a,c}$	$5.45 \pm 4.66^{a,b}$		
CL/F (ml/min/kg)	732.2 ± 321.9	761.6 ± 190.1	754.1 ± 240.9		

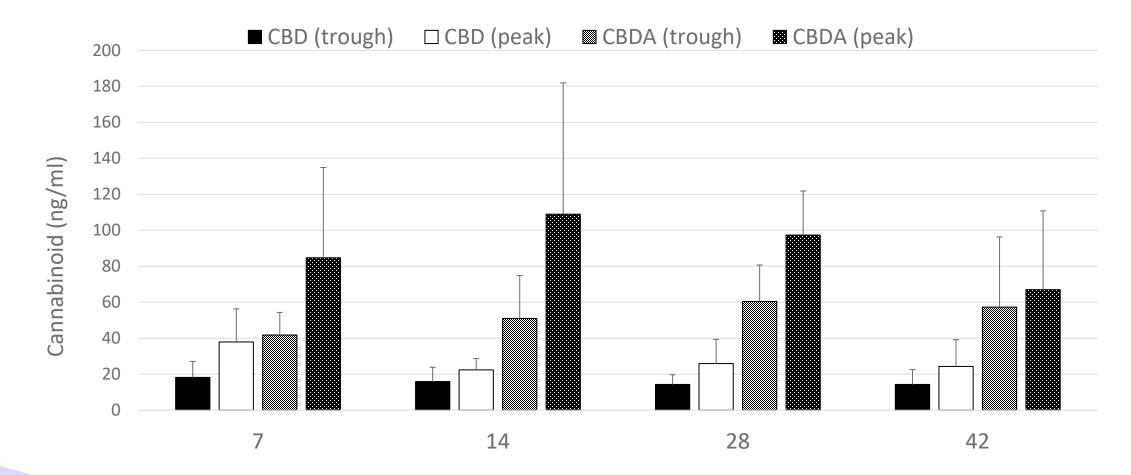
ElleVet Horse Studies:

University of Florida


- 2 mg/kg and 8 mg/kg Ellevet full spectrum oil with 24 hr PK
- Assess GI motility after application as well – barium ball passage with radiographic assessment – ALL NORMAL

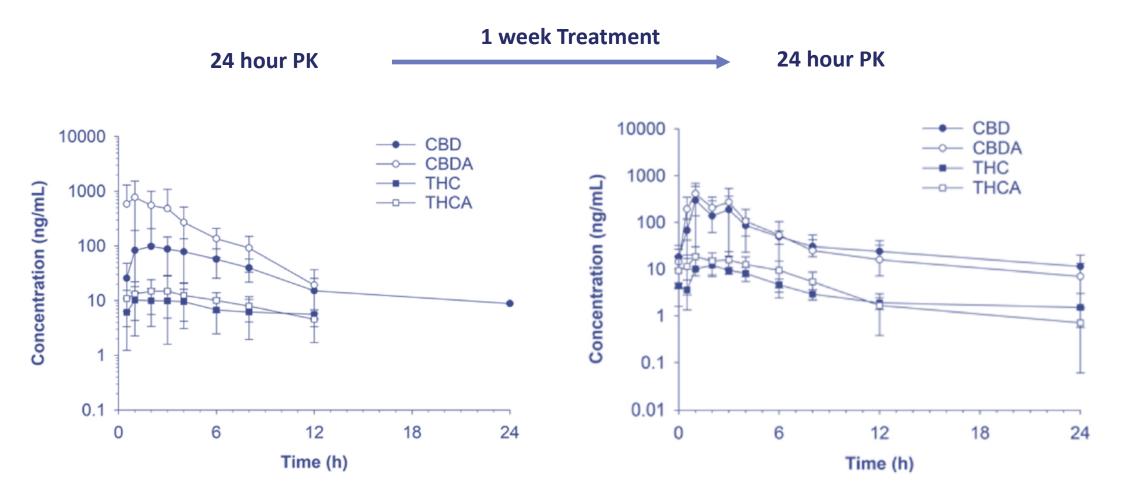
Cornell University

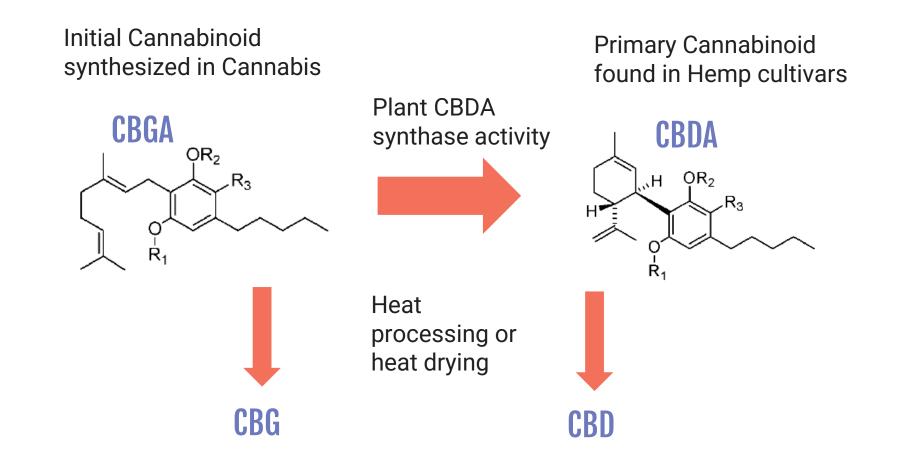
- 7 older horses 6 week cross over of CBDA vs CBD (1 mg/kg) – BID for 6 weeks
- CBC/Chemistry
- Liver biopsy before and after ALL NORMAL
- Serum PK and biweekly peak trough assessment of cannabinoids



Preliminary Look CBD and Other Cannabinoids:

Horse Steady State PK of CBD and CBDA – Peak and Trough

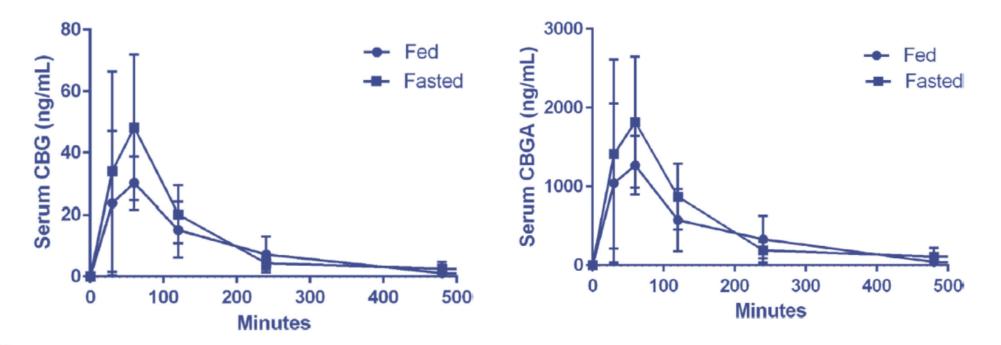

Days of Treatment


CBD/CBDA in Parrots – 30 mg/kg CBD/30 mg/kg CBDA!

Pharmacokinetics of cannabinoids and metabolites in orange-winged Amazon parrots (Amazona

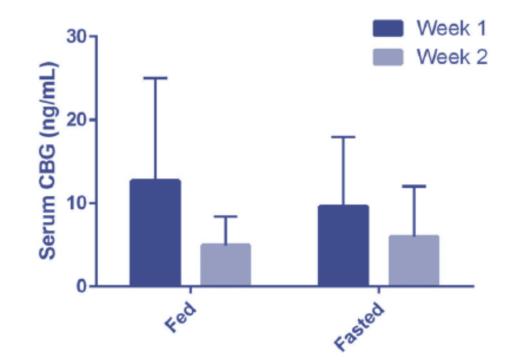
amazonica) following oral administration of single and multiple doses of a hemp extract

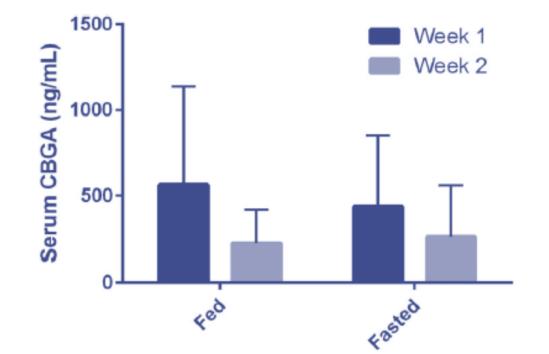
What about other Cannabinoids? CBG/CBGA?


24 hr PK fed and fasted CBG/CBGA -1 mg/kg of each

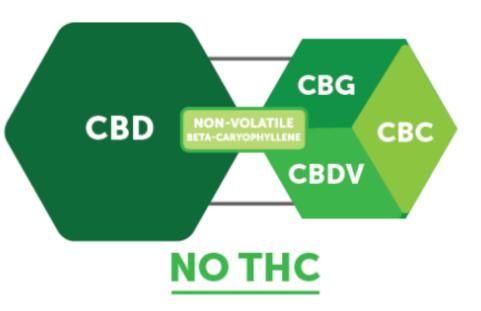
DOI: 10.1111/jvp.13048

ORIGINAL ARTICLE


rinary Pharmacology and Therapeutics WILEY


Single dose and chronic oral administration of cannabigerol and cannabigerolic acid-rich hemp extract in fed and fasted dogs: Physiological effect and pharmacokinetic evaluation

1 and 2 week steady state CBG/CBGA


A lot of companies and a lot of cannabinoids!

COMFORT (HIP AND JOINT)

Form: Chew

C2P Formula: P/ G D Indications: Muscle Pain, Joint Pain, Mobility, Arthritis, Immune Support

Isolated Cannabinoids: CBG, CBD

Ask them why? Where is the PK data to support your blend?

AAVSB – Pharmacokinetics, Safety, NASC, Efficacy

NASC Label

- ElleVet 🗸
- ABSC
- Holistapet
- Chroniquin
- Charlotte's Web
- HempRx√

Safety Study

- ElleVet 🗸
- ABSC
- Holistapet
- Chroniquin
- Charlotte's Web
- Hemp Rx

RCT Canine OA

- ElleVet
- ABSC 🗸
- Holistapet
- Chroniquin
- Charlotte's Web
- Hemp Rx

Positive Results

- ElleVet √
- ABSC
- Holistapet
- Chroniquin
- Charlotte's Web
- Hemp Rx

CBD is now also integrated in Plumb's

						2:22		.II LTE 🔳	
						<	DRUG		
			2:23		•••• LTE ෩	Dosages		^	
			<	DRUG		NOTES:			
2:22	DRUG	••• LTE •••	 Be sure to fully understand and comply with local, state, or provincial regulations related to CBD. See <i>Dosage Forms/Regulatory Status</i>. DOGS: 			 Effective cannabidiol (CBD) dosages remain under investigation and are yet to be fully determined. The dosages listed below represent recommendations from peer-reviewed studies using products that contain <u>only</u> CBD and do not accurately reflect dosage recommended for full- 			
			Osteoarthritis (e every 12 hours ²	extra-label): 2 m	g/kg PO, OTM		ducts. Some cl	linicians recommend	
NOTES: 1. Effective cannabidiol (CBD) dosages remain under investigation and are yet to be fully determined. The dosages listed below represent recommendations from peer-reviewed studies using products that contain <u>only</u> CBD and do not accurately reflect dosage recommended for full- spectrum products. Some clinicians recommend starting with lower dosages and slowly		Epilepsy (extra-l hours in addition hypothesize that effective. ⁴	n to current ther	apy. The authors	 escalating to the dosages presented below. In humans, dosage reductions of 50% and 80% are recommended for patients with moderate and severe hepatic impairment, respectively.¹³ Until veterinary-specific information becomes 				
		Add Note Monitoring		+	available, it is suggested to reduce initial dosages in veterinary patients with hepatic impairment.		reduce initial		
2. In humans, d	escalating to the dosages presented below. 2. In humans, dosage reductions of 50% and 80%		Client Informatio	on	~	local, state, or	3. Be sure to fully understand and comply with local, state, or provincial regulations related t		
are recommended for patients with moderate and severe hepatic impairment, respectively. ¹³ Until veterinary-specific information becomes available, it is suggested to reduce initial dosages in veterinary patients with hepatic		Chemistry / Syno	onyms	~	CBD. See Dosage Forms/Regulatory Status. • DOGS:		julatory Status.		
		Storage / Stabilit	y	~	Back to Top		Calculator 🔿		
	impairment. 3. Be sure to fully understand and comply with		Compatibility / C Considerations	Compounding	~	ش		EQ	
local, state, or provincial regulations related to CBD. See <i>Dosage Forms/Regulatory Status</i> .		Back to Top 🔨)	Calculator 🔿	Home	Notes	Features		
• DOGS:			俞		ΞO				
Back to Top	•	Calculator 🔿	Home	<i>=₽</i> Notes	Features				
① Home	≣Ø Notes	≣ Q Features			-				

CBD use!

- 2 mg/kg in 30 kg Labrador BID – 60 mg BID
- Likely to need over 25 mg/ml solution for appropriate dosing without excessive oil or powder.
- 20 mg/ml 3 ml BID;
 60 mg/ml 1 ml BID

Reviews of Interest

AJVR

Currents in One Health Leading at the intersection of animal, human, and environmental health

A One Health perspective on comparative cannabidiol and cannabidiolic acid pharmacokinetics and biotransformation in humans and domestic animals

Wayne S. Schwark, DVM, MS, PhD1, and Joseph J. Wakshlag, DVM, PhD, DACVIM, DACVSMR2*

¹Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY ²Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY

*Corresponding author: Dr. Wakshlag (drjoesh@gmail.com) Received February 13, 2023

Accepted March 1, 2023 doi.org/10.2460/ajvr.23.02.0031

ABSTRACT

The goal of pharmacokinetic (PK) studies is to provide a basis for appropriate dosing regimens with novel therapeutic agents. With a knowledge of the desired serum concentration for optimum pharmacological effect, the amount and rate of drug administration can be tailored to maintain that concentration based on the 24-hour PK modeling (eq. every 24 hours, every 12 hours) to achieve therapeutic ranges. This dosing and PK information are tailored to maintain that concentration. Typically, these optimum serum concentrations pertain across species. Single-dose PK modeling provides fundamental parameters to suggest dosing regimes. Multiple-dose PK studies provide information on steady-state serum levels to assure that desired therapeutic levels are maintained during chronic administration. Clinical trials using dosing suggested by these PK determinations provide proof that the compound is producing the desired therapeutic effect. A number of PK studies with cannabinoids in humans and domestic animals have been conducted with the goal of determining appropriate clinical use with these plant-derived products. The following review will focus on the PK of cannabidiol (CBD) and the lesser-known precursor of CBD, cannabidiolic acid (CBDA) Although Δ9-tetrahydrocannabinol (THC) has profound pharmacological effects and may be present at variable and potentially violative concentrations in hemp products, PK studies with THC will not be a major consideration. Because, in domestic animals, hemp-CBD products are usually administered orally, that route will be a focus. When available PK results with CBD administered by other routes will be summarized. In addition, the metabolism of CBD across species appears to be different in carnivorous species compared with omnivorous/herbivorous species (including humans) based on current information, and the preliminary information related to this will be explained with the therapeutic implication being addressed in Currents in One Health by Ukai et al, JAVMA, May 2023.

PK Studies with CBD in Dogs

In domestic animals to the present, the greatest number of pharmacokinetic (PK) studies with hemp cannabidiol (CBD) have been conducted in dogs. Indeed, the correlation between CBD serum levels and clinical effectiveness in conditions such as seizure disorders and osteoarthritis is established in canine patients.^{1,2} Initial PK studies with CBD in dogs showed an extremely low bioavailability (0% to 19%) with some dogs showing no serum levels after oral administration.³ This may be due to first-pass hepatic metabolism or the type of formulation utilized (powder in a gelatin capsule).⁴

Bartner et al studied the PK of oral forms (microencapsulated oil beads, CBD-infused oil) and a topical preparation (CBD-infused transdermal cream) in dogs.⁵ Oral dosage levels of CBD were 10 and 20 mg/kg, which is higher than that used in subsequent oral studies in dogs. The oil preparations

resulted in a higher maximal serum concentration (C_{max}) and area under the curve (AUC; see Table 1) with both oral doses than in the report cited above ³ As a follow-up, the drugs were administered in similar doses chronically (6 weeks) to determine adverse effects. The C_{max} levels after the 6-week period were similar to that after a single dose, indicating that there were no alterations in elimination rate with chronic administration.

Gamble et al found a dose-dependent absorption of CBD in a CBD/CBDA-rich hemp mixture. Oral administration of the mixture in oil (1 and 4 mg/kg CBD, as the 2 mg/kg and 8 mg/kg dose contained an equal amount of cannabidiolic acid (CBDA), which was not assessed pharmacokinetically) resulted in median C_{max} levels of 102 and 591 ng/mL and AUCs of 376 and 2,658 ng·h/mL.¹ This group subsequently reported a PK study with oral 1 mg/kg CBD in a CBD/CBDA soft chew preparation and found substantial CBD absorption (C_{max} of 301 ng/mL and

1

00

American Journal of Veterinary Research

Brought to you by Cornell University | Unauthenticated | Downloaded 03/28/23 01:40 PM

Key quality control aspects about cannabinoid-rich hemp products that a veterinarian needs to know: a practitioner's guide

JAVMA

Jack Henion, PhD1; Stacey Evans, JD2; Joseph J. Wakshlag, DVM, PhD3*

Diagnostic Laboratory, College of Veterinary Medicine, Cornell University, Ithaca, NY
'Ellevet Sciences, South Portland, ME
'Dopartment of Uninical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
'Corresponding author: Dr. Wakshlag (jw37@cornell.edu)

Received October 28, 2022 Accepted March 27, 2023 doi.org/10.2460/javma.22.10.0470

ABSTRACT

There is considerable confusion in the veterinary profession surrounding the rise in hemp cannabidiol-based animal products and what veterinarians should know before discussing these products with clients. There is emerging evidence for the potential use in case management across many veterinary indications; however, the cannabinoid concentrations and whether these are isolated cannabinoids or whole hemp extracts is difficult to elucidate, even from the published papers. Much like any extract from a plant, there are multiple considerations including quality control, pharmacokinetics in the intended species, microbiological and chemical contamination, and product consistency—all aspects that should be considered before a conversation can begin with a client. The aim of this review is to help practitioners make informed decisions and better facilitate discussions with clients for companion animals kept as pets. This review will not address food animal issue, as established withholding times have yet to be fully researched.

An Overview of Hemp-derived Cannabis and Cannabinoids

The main cultivars of hemp include Cannabis sativa and Cannabis indica strains, and significant cross breeding across the industry often makes distinguishing Cannabis species difficult. The Cannabis plant can produce over 100 different cannabinoids. All cannabinoids are derived from an initial cannabinoid called cannabigerolic acid (CBGA). In general, depending on the genetics of the plant and various synthase activities, CBGA will be endogenously metabolized into other cannabinoids; however, Cannabis breeding and hybridization of plants has allowed for development of strains that primarily make CBGA through elimination of synthases that form other cannabinoids. The 2 cannabinoids that predominate are tetrahydrocannabinolic acid (THCA) in marijuana and cannabidiolic acid (CBDA) in hemp. There are some plants that make larger quantities of cannabichromenic acid as well (Figure 1).¹ During processing and storage, there is decarboxylation of the acidic forms into the neutral forms, particularly if exposed to light, oxygen, and heat.² This decarboxylation will lead to production of the neutral cannabinoids, ∆9tetrahydrocannabinol (THC) or cannabidiol (CBD). Additionally, any residual THC can be isomerized to

∆8-THC or cannabinol, which are not native to the plant but may have potential pharmacological properties.³ Many of these cannabinoids are routinely tested for by analytic laboratories, the results of which should be available for practitioners to view in a certificate of analysis (COA) before recommending a product to their clients, and this testing laboratory should be certified for cannabinoid analysis (see Current Status of Testing below). Most importantly, most hemp products will have residual THCs consistent with a hemp extract (< 0.3%) rather than marijuana, which will be higher. $\Delta 9$ -THC is the primary cannabinoid that should be avoided as THCA is nonpsychotropic, yet decarboxylation of THCA can occur over time or with heating, leading to ∆9-THC formation. In addition, processing of hemp may lead to exo-THC or ∆8-THC formation, which, although less psychotropic, can be found in analyses in small amounts: therefore, we recommend that veterinarians ensure that the total THCs (including THCA, THC, exo-THC, and ∆8-THC) is no more than 0.3% (eg, an oil or chew should be < 3 mg/mL or g), which is often the case for veterinary hemp CBD products.⁴ What is important to understand is that many reports will say that THC derivatives are not detectable, yet if the lower limit of detection is 1 mg/mL or g, it would be deemed free of THC; hence, the lower limit of detection should be

XAVMA

JAVMA

Currents in One Health Leading at the intersection of animal, human, and environmental health

The clinical use of cannabidiol and cannabidiolic acid-rich hemp in veterinary medicine and lessons from human medicine

Masayasu Ukai, DVM, MS1; Stephanie McGrath, DVM, MS, DACVIM1; Joseph Wakshlag, DVM, PhD, DACVSMR, DACVIM2*

^{1D}Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO "Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY

*Corresponding author: Dr. Wakshlag (drjoesh@gmail.com)

Received February 7, 2023 Accepted March 6, 2023 doi.org/10.2460/javma.23.02.0064

ABSTRACT

The endocannabinoid system (ECS) is an integral neuromodulatory system involved in neuronal development, synaptic plasticity, and homeostasis regarding immunity, as well as brain and other physiological functions such as anxiety, pain, metabolic regulation, and bone growth. Cannabins is a plant that contains exogenous cannabinoids, which have the potential for profound interplay within the ECS as enzymatic inhibitors or receptor-mediated interactions. Activation of cannabinoid receptors leads to various intracellular signaling processes that are involved in cellular functions, but those interactions are diverse due to different affinities of each cannabinoid with relevant receptors. Among the exogenous cannabinoid, scambiolid (ECD) has drawn attention due to its potential anticancer, antiangiogenic, antiinflammatory, and antiseizure properties using in vitro and in vivo models. Although scientific evidence is limited in dogs, there appears to be catious optimism regarding the utilization of EGD in conjunction with other therapeutics for a range of disorders. This review will primarily focus on current scientific research on the efficacy of CBD on seizure, anxiety, osteoarthritis, and atopic dermatific, following a brief discussion of endo- and exogenous cannabinoids, ECS, their molecular mechanism, and potential side effects in veterinary medicine. Cannabinoid pharmacology and phar macokinetics will be addressed in the companion Currents in One Health by Schwark and Wakshlag, *AJVR*, May 2023.

The Endocannabinoid System: Beyond Cannabinoid Receptors

Endocannabinoids (endogenous cannabinoids [ECs]), endocannabinoid receptors, several other receptors activated by ECs, and the enzymes that synthesize and degrade ECs constitute the endocannabinoid system (ECS).1 The ECS is an integral neuromodulatory system that is involved in neuronal development, synaptic plasticity, and homeostasis regarding immunity as well as brain and other physiological functions.¹ Endocannabinoids primarily refer to 2-arachidonoyl glycerol and arachidonoyl ethanolamide (anandamide), both of which have been well studied.1 In the CNS, ECs are secreted through the postsynaptic membrane of neurons and act on presynaptic receptors-endocannabinoid receptors 1 and 2 (CB1 and CB2 receptors)—causing hyperpolar ization following increasing K+ cell influx.² This leads to inhibitory neurotransmitter modulation that can facilitate diverse biological and physiological processes such as anxiety, pain, metabolic regulation, immunity, and bone growth.³ In addition, ECs have different affinities to CB receptors, and their half-life is short due to the rapid metabolism by enzymes (fatty acid amide hydrolase and monoacylglycerol lipase).⁴

CB1 receptors are expressed primarily on cells in the CNS.⁵ CB2 receptors are identified mainly on leukocytes but also on neurons and, to a small degree, glial cells, especially during pathological conditions such as degeneration, inflammation, and anxiety, although its level of expression on neurons in the brain is lower than that of CB1 receptors.⁶⁷ CB2 receptors have been shown to play an essential role in the anti-inflammatory and immunomodulatory properties of canabinoids and can contribute to induction of apoptosis, which contributes to the immunosuppression effects of canabinoids.⁷⁴ Interaction between ECS and cannabinoids will be discussed in more detail in each clinical application section below.

Plant-derived Cannabinoids

As described, the ECS has tremendous implications in neurological homeostasis, and *Cannabis sativa*- or

JAVMA | MAY 2023 | VOL 261 | NO. 5

Brought to you by Cornell University | Unauthenticated | Downloaded 05/24/23 03:04 PM UTC

623

Questions?

Dr. Joseph Wakshlag DVM, PhD, DACVN, DACVSMR ElleVet Sciences Chief Medical Officer Professor at Cornell University College of Veterinary Medicine

joe.wakshlag@ellevetsciences.com