Infectious Disease Journal Club - Viruses

WASHINGTON STATE M UNIVERSITY

Equine Herpesviruses

EHV-1

EHV-1, subtype 1 Equine virus abortion Equine herpesvirus myeloencephalopathy(EHM)

EHV-4 EHV-1, subtype 2 Equine rhinopneumonitis

Horses latently infected with EHV-1 or EHV-4 Festablishment of viral/latency Reactivation of virus from latency Recruitment of new hosts into cycle Masal shedding of infectious virus Virus Nasal shedding of infectious virus

From Allen GP. In, Equine Resp Dis, Lekeux P (ed), 2002, www.ivis.org

Article

Frequency of Detection of Respiratory Pathogens in Clinically Healthy Show Horses Following a Multi-County Outbreak of Equine Herpesvirus-1 Myeloencephalopathy in California

Abigail Wilcox¹, Samantha Barnum¹, Cara Wademan¹, Rachel Corbin¹, Edlin Escobar¹, Emir Hodzic¹, Stephen Schumacher² and Nicola Pusterla^{1,*}

- 1 Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- ² United States Equestrian Federation, Lexington, KY 40511, USA
 * Correspondence: npusterla@ucdavis.edu; Tel.: +530-752-1039

Pathogens 2022, 11, 1161. https://doi.org/10.3390/pathogens11101161

Table 1. Summary of all positive swabs for common and less characterized respiratory pathogens categorized by week after the issuance of USEF guidelines. Total swabs from each week is indicated in the header.

	Week 1 (160 Swabs)	Week 2 (182 Swabs)	Week 3 (156 Swabs)	Week 4 (73 Swabs)	Week 5 (68 Swabs)	All Weeks (639 Swabs)
Common resp. pathogens EHV-1	5 (3.1%)	3 (1.6%)	10 (6.4%)	4 (5.5%)	2 (2.9%)	24 (3.8%)
S. equi	2 (1.3%)	3 (1.6%)	9 (5.8%)	3 (4.1%)	1 (1.5%)	18 (2.8%)
EHV-4	0	1 (0.5%)	5 (3.2%)	0	3 (4.4%)	9 (1.4%)
ERBV	1 (0.6%)	2 (1.1%)	4 (2.6%)	1 (1.4%)	0	8 (1.3%)
EIV	0	4 (2.2%)	0	0	0	4 (0.6%)
ERAV	0	0	0	0	0	0
Total	8 (5.0%)	13 (7.1%)	28 (17.9%)	8 (11.0%)	6 (8.8%)	63 (9.8%)
Less characterized resp. pathogens						
EHV-2	54 (33.8%)	60 (33.0%)	54 (34.6%)	20 (27.4%)	21 (30.9%)	209 (32.7%)
EHV-5	51 (31.9%)	69 (37.9%)	46 (29.5%)	23 (31.5%)	26 (38.2%)	215 (33.6%)
S. zooepidemicus	51 (31.9%)	49 (26.9%)	44 (28.2%)	18 (24.7%)	26 (38.2%)	188 (29.4%)
Total	111 (69.4%)	114 (62.6%)	93 (59.6%)	42 (60.3%)	43 (63.2%)	402 (62.9%)

Fig. 1. Absolute quantitation of EHV-1 qPCR-positive results by disease category (EHV-1, EHM and abortion) based on genotype (N_{752} , D_{752} , and H_{752}). The results are expressed as number of EHV-1 gB target genes per million cells and the horizontal red bars represent median viral load for each disease category.

WASHINGTON STATE M UNIVERSITY

Equine Coronavirus

Risk factors associated with an outbreak of equine coronavirus at a large farm in North Carolina

Kate L. Hepworth-Warren^{1*}, Sara J. Erwin¹, Caroline B. Moore^{2†}, James R. Talbot², Kimberly A. S. Young¹, Michael J. Neault^{3†}, Jennifer C. Haugland^{4,5}, James B. Robertson¹ and Anthony T. Blikslager¹

¹Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States, ²Carolina Equine Hospital, Browns Summit, NC, United States, ³North Carolina Department of Agricultures and Consumer Services, Raleigh, NC, United States, ⁴Rollins Animal Disease Diagnostic Laboratory, North Carolina Department of Agriculture and Consumer Services, Raleigh, NC, United States, ⁵North Carolina Veterinary Diagnostic Laboratory System, North Carolina Department of Agriculture and Consumer Services, Raleigh, NC, United States

> Front. Vet. Sci. 10:1060759. doi: 10.3389/fvets.2023.1060759

Sign	Yes, n (%)	No, n (%)	Unknown <i>, n</i> (%)	
Fever	3 (17.6%)	11 (64.7%)	3 (17.6%)	
Diarrhea	3 (17.6%)	11 (64.7%)	3 (17.6%)	
Colic	6 (35.3%)	7 (41.2%)	4 (23.5%)	
Anorexia	1 (5.9%)	12 (70.6%)	4 (23.5%)	
Small colon impaction	3 (17.6%)	11 (64.7%)	3 (17.6%)	
_				
			Significa Risk	 Primarily housed in a stall (167) In work (27) Housed next to a positive horse (7.5)

Eastern and Western Equine Encephalomyelitis Viruses

Eastern Equine Encephalitis

- Reportable disease
- Spring, summer cases
- 184 reported cases in 2019
- 107 reported cases in
- Probably hundreds
- Poor vaccination
- Often <3 years of age

What about WEE?

Karl Friedrich Meyer

The "Pasteur of the 20th Century"

https://en.wikipedia.org/wiki/Karl_Friedrich_Meyer

Western Equine Encephalomyelitis

Last human case in North America in 1998

Last substantial equine epizootic in 1975 in North Dakota and Manitoba

Smaller equine epizootics into the 1990s

Latest identification in mosquito pool in 2013 in Nevada

Recently removed from CDC surveillance system

Small surveillance study in Colorado in 2017 with no detection in mosquito pools

Theiler's Disease or Serum Hepatitis

- Acute hepatocellular necrosis of horses
- Associated with recent (4 12 wks) administration of an equine-origin biologic (often tetanus antitoxin)
- · Occurs worldwide, highly fatal
- In-contact horses may also develop disease, suggesting it can be infectious and contagious
- Pathology is similar to that observed with hepatitis virus in horses

1867-1936

Etiology?

FLAVIVIRIDAE

- Equine pegivirus (EqPgV, Pegivirus E)
- Theiler's disease associated virus (EqPgV, Pegivirus D)
- Equine hepacivirus (EqHV)

PARVOVIRIDAE

 Equine parvovirus-hepatitis (EqPV-H)

Viral testing of 18 consecutive cases of equine serum hepatitis: A prospective study (2014-2018)

Joy E. Tomlinson¹ | Amit Kapoor² | Arvind Kumar² | Bud C. Tennant³ | Melissa A. Laverack⁴ | Laurie Beard⁵ | Katie Delph⁵ | Elizabeth Davis⁵ | Harold Schott II⁶ | Kara Lascola⁷ | Todd C. Holbrook⁸ | Philip Johnson⁹ | Sandra D. Taylor¹⁰ | Erica McKenzie¹¹ | Jessica Carter-Arnold¹² | Emilie Setlakwe¹³ | Lisa Fultz¹⁴ | Jeff Brakenhoff¹⁵ | Rebecca Ruby¹⁶ | Sheetal Trivedi² | Gerlinde R. Van de Walle¹ | Randall W. Renshaw¹⁷ | Edward J. Dubovi¹⁷ | Thomas J. Divers³ •

18 horses with naturally occurring serum hepatitis

PCR for hepacivirus, TDAV, pegivirus, parvovirus

Horses received antitoxin, plasma, or stem cells before onset

All samples TDAV negative

Parvovirus detected in serum, liver, or both from all 18 horses

All TAT samples tested were also positive

Tropism, pathology, and transmission of equine parvovirus-hepatitis Joy Ellen Tomlinson ¹^a, Mason Jager ¹^a, Alyssa Struzyna^b, Melissa Laverack^c, Lisa Ann Fortier^d, Edward Dubovi ⁽¹⁾^c, Lane D. Foil^e, Peter D. Burbelo ⁽¹⁾^f, Thomas J. Divers^d and Gerlinde R. Van de Walle ⁽¹⁾^a ^aBaker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA; ^bWalnridge Equine Clinic, Cream Ridge, NJ, USA; ^cNew York State Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY, USA; ^dDepartment of Clinical Sciences, Cornell University College of Veterinary Medicine, İthaca, NY, USA; ^eEntomology Department, Louisiana State University, Baton Rouge, LA, USA; ^fDental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD, USA **Emerging Microbes & Infections** 2020, VOL. 9 Virus identified in hepatocytes of naturally infected horses https://doi.org/10.1080/22221751.2020.1741326 Hepatitis developed in 8/10 experimentally-infected horses; 1 progressed to liver failure latrogenic transmission demonstrated Insect transmission: failed 50 un Oral, fecal and nasal shedding

